二阶差分方程边值问题正解的存在性
Existence of Positive Solutions of Second-Order Boundary Value Problems for Difference Equations
-
摘要: 运用Krasnoselskii不动点定理考察了二阶差分方程边值问题{△2u(k-1)+a(k)f(u(k))=0,k∈[1,T]z/u(0)=0,u(T+1)=αu(τ)1个及2个正解的存在性,其中f:[0,∞)→[0,∞)连续,T∈Z且T≥3,τ∈[2,T-1]z.
-
关键词:
- 差分方程,正解,不动点
Abstract: In this paper, we use the Krasnoselskii fixed piont theorem to study the existence of one or two positive solutions of second-order boundary value problems for difference equations {△2u(k- 1) +a(k)f(u(k)) = 0, k ∈ [1, T]z/u(0) = 0, u(T + 1) = αu(τ)where of: [0, ∞) → [0, ∞) is continuous, T ∈ Z and T≥ 3, τ∈ [2, T- 1]z. -
-
计量
- 文章访问数: 302
- HTML全文浏览数: 184
- PDF下载数: 0
- 施引文献: 0