柳文清, 陈清婉.捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J].应用数学和力学, 2019, 40(3):321-331.
张国洪, 王小利, 王稳地.一个考虑扩散的Holling-Tanner捕食-食饵模型研究[J].西南师范大学学报(自然科学版), 2012, 37(3):16-19. doi: 10.3969/j.issn.1000-5471.2012.03.004
邵翠, 陈文彦.带有Sigmoidal型响应函数反应扩散模型的正解[J].四川师范大学学报(自然科学版), 2013, 36(4):534-539. doi: 10.3969/j.issn.1001-8395.2013.04.010
郭改慧, 李兵方, 岳宗敏.带交叉扩散的Ivlev捕食-食饵模型的分歧正解[J].西南大学学报(自然科学版), 2013, 35(1):74-78.
郭庭光, 徐志庭.带有扩散项和接种的传染病模型的行波解[J].数学物理学报, 2017, 37A (6):1129-1147. doi: 10.3969/j.issn.1003-3998.2017.06.013
LI C L.Stability and Traveling Fronts of a Three-species Diffusive Prey-Predator System with Delays[J].工程数学学报, 2017, 34(2):182-198.
MUMBY P J, HASTINGS A, EDWARDS H J.Thresholds and the Resilience of Caribbean Coral Reefs[J].Nature, 2007, 450(7166):98-101. doi: 10.1038/nature06252
HNAIEN D, KELLIL F, LASSOUED R.Asymptotic Behavior of Global Solutions of an Anomalous Diffusion System[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1519-1530. doi: 10.1016/j.jmaa.2014.07.083
DI NEZZA E, PALATUCCI G, VALDINOCI E.Hitchhiker's Guide to the Fractional Sobolev Spaces[J].Bulletin Des Sciences Mathématiques, 2012, 136(5):521-573. doi: 10.1016/j.bulsci.2011.12.004
LISKEVICH V A, SEMENOV Y A.Some Inequalities for Sub-Markovian Generators and Their Applications to the Perturbation Theory[J].Proceedings of the American Mathematical Society, 1993, 119(4):1171-1177.
LI C L.Existence of the Non-Constant Steady States to a Fractional Diffusion Predator-Prey System Including Holling type-II Functional Response[J].Advances in Difference Equations, 2017, 2017:165. doi: 10.1186/s13662-017-1189-z
童裕孙.泛函分析教程[M].上海:复旦大学出版社, 2003.