席荣荣, 云晓春, 张永铮, 等.一种改进的网络安全态势量化评估方法[J].计算机学报, 2015, 38(4): 749-758.
|
JAJODIA S, ALBANESE M. An Integrated Framework for Cyber Situation Awareness [J]. Theory and Models for Cyber Situation Awareness, 2017, 10030: 29-46
|
LOUKAS G, VUONG T, HEARTFIELD R, et al. Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning [J]. IEEE Access, 2018, 6(1): 3491-3508.
|
AHMADIAN RAMAKI A, RASOOLZADEGAN A, JAVAN JAFARI A. A Systematic Review on Intrusion Detection Based on the Hidden Markov Model [J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2018, 11(3): 111-134. doi: 10.1002/sam.11377
|
高妮, 高岭, 贺毅岳, 等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报, 2017, 45(3): 730-739.
|
徐慧敏, 陈秀宏.图正则化稀疏判别非负矩阵分解[J].智能系统学报, 2019, 14(6): 1217-1224.
|
MENG Y, SHANG R H, JIAO L C, et al. Feature Selection Based Dual-Graph Sparse Non-Negative Matrix Factorization for Local Discriminative Clustering [J]. Neurocomputing, 2018, 290: 87-99. doi: 10.1016/j.neucom.2018.02.044
|
钟琴.非负矩阵最大特征值的新界值[J].西南大学学报(自然科学版), 2018, 40(2): 40-43.
|
LIAO Q, ZHANG Q. Local Coordinate Based Graph-Regularized NMF for Image Representation [J]. Signal Processing, 2016, 124: 103-114. doi: 10.1016/j.sigpro.2015.09.038
|
LEE D D, SEUNG H S. Learning the Parts of Objects by Non-Negative Matrix Factorization [J]. Nature, 1999, 401(6755): 788-791. doi: 10.1038/44565
|
CICHOCKI A, ZDUNEK R, AMARI S I. Csiszár's Divergences for Non-Negative Matrix Factorization: Family of New Algorithms [M]//Independent Component Analysis and Blind Signal Separation. Berlin: Springer, 2006: 32-39.
|
CICHOCKI A, CRUCES S, AMARI S I. Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization [J]. Entropy, 2011, 13(1): 134-170. doi: 10.3390/e13010134
|
DHILLON I S, SRA S. Generalized Nonnegative Matrix Approximations with Bregman Divergences [J]. Advances in Neural Information Processing Systems, 2005(11): 5-8.
|
荣德生, 段志田, 胡举爽, 等.基于二阶锥规划与改进遗传算法的配网重构[J].控制工程, 2019, 26(2): 223-228.
|
李建国, 张海飞, 周璐婕, 等.基于改进遗传算法的立体车库布局对比及服务资源优化[J].西南大学学报(自然科学版), 2019, 41(4): 139-148.
|
BENJAMIN R, BARTLEY R. Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic [C]//American Statistical Association 2018 Symposium on Data Science and Statistics. Berlin: Springer, 2018: 1-13.https://www.researchgate.net/publication/325226141_Sequence_Aggregation_Rules_for_Anomaly_Detection_in_Computer_Network_Traffic
|
VIJAYANAND R, DEVARAJ D, KANNAPIRAN B. Intrusion Detection System for Wireless Mesh Network Using Multiple Support Vector Machine Classifiers with Genetic-algorithm-based Feature Selection [J]. Computers & Security, 2018, 77: 304-314.
|
NICHOLAS L, OOI S Y, PANG Y H, et. al. Study of Long Short-Term Memory in Flow-Based Network Intrusion Detection System [J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(3): 1-11.
|
SHARAFALDIN I, HABIBI LASHKARI A, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization [C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy. Funchal: Science and Technology Publications, 2018: 1-18.https://www.researchgate.net/publication/322870768_Toward_Generating_a_New_Intrusion_Detection_Dataset_and_Intrusion_Traffic_Characterization
|
KUMAR N, MALLICK P. Blockchain Technology for Security Issues and Challenges in IoT [J]. Procedia Computer Science, 2018, 132: 1815-1823. doi: 10.1016/j.procs.2018.05.140
|