SIGNORONI A, SAVARDI M, BARONIO A, et al. Deep Learning Meets Hyperspectral Image Analysis: a Multidisciplinary Review [J]. Journal of Imaging, 2019, 5(5): 52. doi: 10.3390/jimaging5050052
PAOLETTI M E, HAUT J M, PLAZA J, et al. A New Deep Convolutional Neural Network for Fast Hyperspectral Image Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 120-147. doi: 10.1016/j.isprsjprs.2017.11.021
HE W, ZHANG H Y, SHEN H F, et al. Hyperspectral Image Denoising Using Local Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 713-729. doi: 10.1109/JSTARS.2018.2800701
周蕊, 欧毅, 虞豹, 等.多旋翼无人机载高光谱成像系统几何和辐射校正方法研究[J].西南大学学报(自然科学版), 2019, 41(9): 141-147.
DU B, HUANG Z Q, WANG N, et al. Joint Weighted Nuclear Norm and Total Variation Regularization for Hyperspectral Image Denoising[J]. International Journal of Remote Sensing, 2018, 39(2): 334-355. doi: 10.1080/01431161.2017.1382742
INCE T. Hyperspectral Image Denoising Using Group Low-Rank and Spatial-Spectral Total Variation[J]. IEEE Access, 2019, 7: 52095-52109. doi: 10.1109/ACCESS.2019.2911864
MA G Q, HUANG T Z, HUANG J, et al. Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising[J]. IEEE Access, 2019, 7: 79850-79865. doi: 10.1109/ACCESS.2019.2923255
DONG W S, WANG H, WU F F, et al. Deep Spatial-Spectral Representation Learning for Hyperspectral Image Denoising[J]. IEEE Transactions on Computational Imaging, 2019, 5(4): 635-648. doi: 10.1109/TCI.2019.2911881
KATKOVNIK V, EGIAZARIAN K. Sparse Phase Imaging Based on Complex Domain Nonlocal BM3D Techniques[J]. Digital Signal Processing, 2017, 63: 72-85. doi: 10.1016/j.dsp.2017.01.002
GONG X, CHEN W, CHEN J. A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising[J]. IEEE Transactions on Signal Processing, 2020, 68: 1168-1180. doi: 10.1109/TSP.2020.2971441
WU C, MA X Y, WANG W B. Hyperspectral Image Denoise Based on Curvelet Transform Combined with Weight Coefficient Method[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(4): 4425-4429.
ZHUANG L, BIOUCAS-DIAS J M. Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 730-742. doi: 10.1109/JSTARS.2018.2796570
YUAN Q Q, ZHANG Q, LI J, et al. Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1205-1218. doi: 10.1109/TGRS.2018.2865197
BAI X, XU F, ZHOU L, et al. Nonlocal Similarity Based Nonnegative Tucker Decomposition for Hyperspectral Image Denoising[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 701-712. doi: 10.1109/JSTARS.2018.2791718
韩栋, 王春华.基于曲率约束因子与边缘加权法则的图像修复算法[J].西南师范大学学报(自然科学版), 2019, 44(3): 95-100.