李晓, 王贺军, 周家足. (p, q)-John椭球[J/OL]. Science China Mathematics, 2020, 50: 1-22. [2020-06-05]. http://kns.cnki.net/kcms/detail/11.5837.O1.20200519.1723.002.html.
BALL K. Volume Ratios and a Reverse Isoperimetric Inequality[J]. J of Lond Math Soc, 1991, 44(2): 351-359.
BALL K. Ellipsoids of Maximal Volume in Convex Bodies[J]. Geom Dedic, 1992, 41(2): 241-250.
GIANNOPOULOS A A, MILMAN V D. Extremal Problems and Isotropic Positions of Convex Bodies[J]. Israel J Math, 2000, 117(1): 29-60. doi: 10.1007/BF02773562
GRUBER P M, SCHUSTER F E. An Arithmetic Proof of John's Ellipsoid Theorem[J]. Arch Math, 2005, 85(1): 82-88. doi: 10.1007/s00013-005-1326-x
GRUBER P M. John and Loewner Ellipsoids[J]. Discrete Comput Geom, 2011, 46(4): 776-788. doi: 10.1007/s00454-011-9354-8
LUTWAK E, YANG D, ZHANG G Y. Lp John Ellipsoids[J]. Proc Lond Math Soc, 2005, 90(2): 497-520. doi: 10.1112/S0024611504014996
ZOU D, XIONG G, Orlicz-John Ellipsoids[J]. Adv Math, 2014, 265: 132-168. doi: 10.1016/j.aim.2014.07.034
HU J Q, XIONG G, The logarithmic John Ellipsoid[J]. Geom Dedic, 2018, 197(1): 33-48. doi: 10.1007/s10711-017-0316-z
LUTWAK E, YANG D, ZHANG G Y. Lp Dual Curvature Measures[J]. Adv Math, 2018, 329: 85-132. doi: 10.1016/j.aim.2018.02.011
周媛, 张增乐. 平面上的逆Bonnesen-型Minkowski不等式[J]. 西南大学学报(自然科学版), 2019, 41(2): 70-74.
杨林, 罗淼, 王贺军. Lp对偶Brunn-Minkowski不等式[J]. 西南大学学报(自然科学版), 2017, 39(10): 79-83.
陶江艳, 李晓. 对偶Lp变换法则[J]. 西南师范大学学报(自然科学版), 2019, 44(12): 31-34.
SCHNEIDER R. Convex Bodies: The Brunn-Minkowski Theory[M]. Cambridge: Cambridge University Press, 2014.
LUTWAK E. Dual Mixed Volumes[J]. Pacific J Math, 1975, 58(2): 531-538. doi: 10.2140/pjm.1975.58.531