LI Y R, WANG R H, YIN J Y. Backward Compact Attractors for Non-Autonomous Benjamin-Bona-Mahony Equations on Unbounded Channels[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22(7): 2569-2586. doi: 10.3934/dcdsb.2017092
|
WANG B X. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems[J]. Journal of Differential Equations, 2012, 253(5): 1544-1583. doi: 10.1016/j.jde.2012.05.015
|
WANG J H, GU A H. Existence of Backwards-Compact Pullback Attractors for Non-Autonomous Lattice Dynamical Systems[J]. Journal of Difference Equations and Applications, 2016, 22(12): 1906-1911. doi: 10.1080/10236198.2016.1254205
|
WANG B X. Asymptotic Behavior of Non-Autonomous Lattice Systems[J]. Journal of Mathematical Analysis and Applications, 2007, 331(1): 121-136. doi: 10.1016/j.jmaa.2006.08.070
|
王凤玲, 吴柯楠, 李扬荣. 非线性随机Ginzburg-Landau方程的Wong-Zakai逼近[J]. 西南大学学报(自然科学版), 2019, 41(9): 87-92.
|
吴柯楠, 王凤玲, 李扬荣. 非自治随机Kuramoto-Sivashinsky方程的Wong-Zakai逼近[J]. 西南师范大学学报(自然科学版), 2020, 45(1): 31-36.
|
GU A H, KLOEDEN P E. Asymptotic Behavior of a Nonautonomous p-Laplacian Lattice System[J]. International Journal of Bifurcation and Chaos, 2016, 26(10): 1650174. doi: 10.1142/S0218127416501741
|
GU A H, LI Y R. Dynamic Behavior of Stochastic p-Laplacian-Type Lattice Equations[J]. Stochastics and Dynamics, 2017, 17(5): 1750040. doi: 10.1142/S021949371750040X
|
DAMASCELLI L. Comparison Theorems for Some Quasilinear Degenerate Elliptic Operators and Applications to Symmetry and Monotonicity Results[J]. Annales de l'Institut Henri Poincaré (Analyse Linéaire), 1998, 15(4): 493-516. doi: 10.1016/S0294-1449(98)80032-2
|
BATES P W, LISEI H, LU K N. Attractors for Stochastic Lattice Dynamical Systems[J]. Stochastics and Dynamics, 2006, 6(1): 1-21. doi: 10.1142/S0219493706001621
|
WANG S L, LI Y R. Longtime Robustness of Pullback Random Attractors for Stochastic Magneto-Hydrodynamics Equations[J]. Physica D-Nonlinear Phenomena, 2018, 382: 46-57.
|
CARABALLO T, LU K N. Attractors for Stochastic Lattice Dynamical Systems with a Multiplicative Noise[J]. Frontiers of Mathematics in China, 2008, 3(3): 317-335. doi: 10.1007/s11464-008-0028-7
|
DUAN J Q, LU K N, SCHMALFUSS B. Invariant Manifolds for Stochastic Partial Differential Equations[J]. The Annals of Probability, 2003, 31(4): 2109-2135.
|