GASISKI L, PAPAGEORGIOU N S. Positive Solutions for the Neumann p-Laplacian with Superdiffusive Reaction[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(4): 1711-1731. doi: 10.1007/s40840-015-0212-3
|
FARACI F. Multiplicity Results for a Neumann Problem Involving the p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2003, 277(1): 180-189. doi: 10.1016/S0022-247X(02)00530-9
|
ANELLO G, CORDARO G. An Existence Theorem for the Neumann Problem Involving the p-Laplacian[J]. Journal of Convex Analysis, 2003, 10(1): 185-198.
|
BARLETTA G, CHINNI A. Existence of Solutions for a Neumann Problem Involving the p(x)-Laplacian[J]. Electronic Journal of Differential Equations, 2013, 2013(158): 1-12.
|
YAO J H, WANG X Y. On an Open Problem Involving the p(x)-Laplacian ——A Further Study on the Multiplicity of Weak Solutions to p(x)-Laplacian Equations[J]. Nonlinear Analysis, 2008, 69(4): 1445-1453. doi: 10.1016/j.na.2007.06.044
|
DA SILVA J P P. On Some Multiple Solutions for a p(x)-Laplacian Equation with Critical Growth[J]. Journal of Mathematical Analysis and Applications, 2016, 436(2): 782-795. doi: 10.1016/j.jmaa.2015.11.078
|
SAINTIER N, SILVA A. Local Existence Conditions for an Equations Involving the p(x)-Laplacian with Critical Exponent in $\mathbb{R} $N [J]. Nonlinear Differentia Equations and Applications, 2017, 24(1): 1-36. doi: 10.1007/s00030-016-0424-8
|
FAN X L, HAN X Y. Existence and Multiplicity of Solutions for p(x)-Laplacian Equations in $\mathbb{R} $N [J]. Nonlinear Analysis, 2004, 59(3): 173-188.
|
杨晓梅, 路艳琼. 一类变系数二阶离散Neumann边值问题正解的存在性[J]. 西南师范大学学报(自然科学版), 2020, 45(11): 18-27.
|
冯敏, 周军. 一类带有奇异项的非局部抛物方程解的爆破[J]. 西南大学学报(自然科学版), 2020, 42(7): 124-129.
|
BERESTYCKI H, CAPUZZO D I, NIRENBERG L. Variational Methods for Indefinite Superlinear Homogeneous Elliptic Problems[J]. Nonlinear Differential Equations and Applications, 1995, 2(4): 553-572. doi: 10.1007/BF01210623
|
CHABROWSKI J. The Critical Neumann Problem for Semilinear Elliptic Equations with Concave Perturbations[J]. Ricerche Di Matematica, 2007, 56(2): 297-319. doi: 10.1007/s11587-007-0018-1
|
CHABROWSKI J. On the Neumann Problem with Singular and Superlinear Nonlinearities[J]. Communications in Applied Analysis, 2009, 13(3), 327-340.
|
CHABROWSKI J, TINTAREV C. An Elliptic Problem with an Indefinite Nonlinearity and a Parameter in the Boundary Condition[J]. Nonlinear Differential Equations Applications, 2014, 21(4): 519-540. doi: 10.1007/s00030-013-0256-8
|
CHABROWSKI J. On the Neumann Problem with a Nonlinear Boundary Condition[J]. Annals of University of Bucharest, 2011, 2(Lx): 27-51.
|
EKELAND I. On the Variational Principle[J]. Journal of Mathematical Analysis and Applications, 1974, 47(2): 324-353. doi: 10.1016/0022-247X(74)90025-0
|
RABINOWITZ P. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. Providence, Rhode Island: American Mathematical Society, 1986: 9-21.
|