PELEYEJU M G, AROTIBA O A. Recent Trend in Visible-Light Photoelectrocatalytic Systems for Degradation of Organic Contaminants in Water/Wastewater[J]. Environmental Science: Water Research & Technology, 2018, 4(10): 1389-1411.
GARCIA-SEGURA S, BRILLAS E. Applied Photoelectrocatalysis on the Degradation of Organic Pollutants in Wastewaters[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35.
DONKADOKULA N Y, KOLA A K, NAZ I, et al. A Review on Advanced Physico-Chemical and Biological Textile Dye Wastewater Treatment Techniques[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 543-560. doi: 10.1007/s11157-020-09543-z
ZHANG Y Z, XIONG X Y, HAN Y, et al. Photoelectrocatalytic Degradation of Recalcitrant Organic Pollutants Using TiO2 Film Electrodes: an Overview[J]. Chemosphere, 2012, 88(2): 145-154. doi: 10.1016/j.chemosphere.2012.03.020
戴高鹏, 周京慧, 龙家豪, 等. 分子印迹TiO2纳米管阵列的制备与选择性光电催化降解邻苯二甲酸二乙酯[J]. 无机化学学报, 2020, 36(5): 850-856.
MAZIERSKI P, BORZYSZKOWSKA A F, WILCZEWSKA P, et al. Removal of 5-Fluorouracil by Solar-Driven Photoelectrocatalytic Oxidation Using Ti/TiO2(NT) Photoelectrodes[J]. Water Research, 2019, 157: 610-620. doi: 10.1016/j.watres.2019.04.010
GU X D, YU N, ZHANG L S, et al. Growth of TiO2 Nanorod Bundles on Carbon Fibers as Flexible and Weaveable Photocatalyst/Photoelectrode[J]. RSC Advances, 2015, 5(124): 102868-102876. doi: 10.1039/C5RA21344D
WANG Y F, ZHANG M, LI J, et al. Construction of Ag@AgCl Decorated TiO2 Nanorod Array Film with Optimized Photoelectrochemical and Photocatalytic Performance[J]. Applied Surface Science, 2019, 476: 84-93. doi: 10.1016/j.apsusc.2019.01.086
SUN Q, HONG Y, LIU Q H, et al. Growth of Nitrogen-Doped Rutile TiO2 Nanorod Arrays and Their Improved Performance in All-Solid-State Solar Cells[J]. Materials Research Express, 2017, 4(7): 075023-1-075023-10.
ZAFAR Z, ALI I, PARK S, et al. Effect of Different Iron Precursors on the Synthesis and Photocatalytic Activity of Fe-TiO2 Nanotubes under Visible Light[J]. Ceramics International, 2020, 46(3): 3353-3366. doi: 10.1016/j.ceramint.2019.10.045
杨开, 钟登杰, 徐云兰, 等. N, F, Ce三掺杂TiO2/Ti光催化处理染料废水的研究[J]. 重庆理工大学学报(自然科学), 2017, 31(10): 134-139, 164.
KUMAR A, KHAN M, HE J H, et al. Recent Developments and Challenges in Practical Application of Visible-Light-Driven TiO2-Based Heterojunctions for PPCP Degradation: a Critical Review[J]. Water Research, 2020, 170: 115356-1-115356-18.
DING C M, SHI J Y, WANG Z L, et al. Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces[J]. ACS Catalysis, 2017, 7(1): 675-688. doi: 10.1021/acscatal.6b03107
da TRINDADE C D M, da SILVA S W, BORTOLOZZI J P, et al. Synthesis and Characterization of TiO2 Films Onto AISI 304 Metallic Meshes and Their Application in the Decomposition of the Endocrine-Disrupting Alkylphenolic Chemicals[J]. Applied Surface Science, 2018, 457: 644-654. doi: 10.1016/j.apsusc.2018.06.287
刘惠玲, 周定, 李湘中, 等. 网状Ti/TiO2电极光电催化氧化若丹明B[J]. 环境科学, 2002, 23(4): 47-51.
DEVI L G, KAVITHA R. A Review on Non Metal Ion Doped Titania for the Photocatalytic Degradation of Organic Pollutants Under UV/Solar Light: Role of Photogenerated Charge Carrier Dynamics in Enhancing the Activity[J]. Applied Catalysis B: Environmental, 2013, 140-141: 559-587.
LOW J, YU J G, JARONIEC M, et al. Heterojunction Photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694-1-1601694-20.
XIN Y J, WANG G, ZHU X W, et al. Photodegradation Performance and Mechanism of 4-Nonylphenol by WO3/TiO2 and TiO2 Nanotube Array Photoelectrodes[J]. Environmental Technology, 2017, 38(24): 3084-3092. doi: 10.1080/09593330.2017.1290143
胡春光, 王港, 辛言君. 微弧氧化法制备WO3/TiO2光电极及光催化性能研究[J]. 水处理技术, 2015, 41(7): 37-39, 44.
李爱昌, 胡晓红, 王瑞燕, 等. 复合电沉积制备SnO2/TiO2薄膜及其光电催化性能[J]. 材料科学与工艺, 2008, 16(1): 62-65. doi: 10.3969/j.issn.1005-0299.2008.01.016
LIU R, BIE Y C, QIAO Y J, et al. Design of G-C3N4/TiO2 Nanotubes Heterojunction for Enhanced Organic Pollutants Degradation in Waste Water[J]. Materials Letters, 2019, 251: 126-130. doi: 10.1016/j.matlet.2019.05.065
ZHANG Y, WANG Q, LU J N, et al. Synergistic Photoelectrochemical Reduction of Cr(Ⅵ) and Oxidation of Organic Pollutants by G-C3N4/TiO2-NTs Electrodes[J]. Chemosphere, 2016, 162: 55-63. doi: 10.1016/j.chemosphere.2016.07.064
GHALEBIZADE M, AYATI B. Solar Photoelectrocatalytic Degradation of Acid Orange 7 with ZnO/TiO2 Nanocomposite Coated on Stainless Steel Electrode[J]. Process Safety and Environmental Protection, 2016, 103: 192-202. doi: 10.1016/j.psep.2016.07.009
TANG W W, ZHANG Y Z, CHEN X Y, et al. Fe2O3/TiO2 Film Electrodes Prepared by the Forced Hydrolysis Method and Their Photoelectrocatalytic Performance[J]. Materials Letters, 2018, 217: 109-112. doi: 10.1016/j.matlet.2018.01.060
丛燕青, 李哲, 张轶, 等. Fe2O3/TiO2纳米管的制备及其光电催化降解染料废水性能[J]. 催化学报, 2012, 33(8): 1402-1409.
李玥, 李红英, 常玉雪, 等. MoS2/TiO2纳米管阵列的一步沉积法制备及光电性能研究[J]. 影像科学与光化学, 2018, 36(4): 331-339.
孙墨杰, 胡全, 李健, 等. ZnFe2O4/TiO2纳米管阵列电极的制备及光电催化降解苯酚的研究[J]. 化学学报, 2013, 71(2): 78-85.
LI G, WU L, LI F, et al. Photoelectrocatalytic Degradation of Organic Pollutants via a CdS Quantum Dots Enhanced TiO2 Nanotube Array Electrode under Visible Light Irradiation[J]. Nanoscale, 2013, 5(5): 2118-2125.
赵曦. CdS/TiO2电极的制备及其光电性能的研究[J]. 河南化工, 2014, 31(11): 25-28.
GUTIÉRREZ D J R, MATHEWS N R, MARTÍNEZ S S. Photocatalytic Activity Enhancement of TiO2 Thin Films with Silver Doping under Visible Light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262: 57-63.
张坤, 宋铁红, 肖书虎, 等. Ag-TiO2纳米管电极光电催化降解四环素的优化与分析[J]. 环境工程学报, 2016, 10(9): 4726-4732.
LIN P, NIE L F, XU Z, et al. One-Step and Ligand-Free Modification of Au Nanoparticles on Highly Ordered TiO2 Nanotube Arrays for Effective Photoelectrocatalytic Decontamination[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 668-675.
WANG Y F, ZHU Y X, ZHAO X Y, et al. Improving Photocatalytic Rhodamine B Degrading Activity with Pt Quantum Dots on TiO2 Nanotube Arrays[J]. Surface and Coatings Technology, 2015, 281: 89-97.
王理明, 姚秉华, 裴亮. Pt掺杂TiO2纳米管制备及其光电催化双酚A[J]. 环境工程学报, 2014, 8(12): 5289-5292.
许磊, 易江龙. Pt(Ⅳ)掺杂TiO2光电催化降解酸性红B及机理研究[J]. 材料研究与应用, 2017, 11(2): 79-83.
CHENG X W, LIU H L, CHEN Q H, et al. Preparation and Characterization of Palladium Nano-Crystallite Decorated TiO2 Nano-Tubes Photoelectrode and Its Enhanced Photocatalytic Efficiency for Degradation of Diclofenac[J]. Journal of Hazardous Materials, 2013, 254-255: 141-148.
LI F, HUANG H B, LI G S, et al. TiO2 Nanotube Arrays Modified with Nanoparticles of Platinum Group Metals (Pt, Pd, Ru): Enhancement on Photoelectrochemical Performance[J]. Journal of Nanoparticle Research, 2019, 21(2): 1-13.
MOHAN S, SIVAKUMAR B, KULANGARA R V, et al. Visible Light Driven Photocatalytic Efficiency of RGO-Ag-BiFeO3 Ternary Nanohybrids on the Decontamination of Dye-Polluted Water: an Amalgamation of 1D, 2D and 3D Systems[J]. ChemistrySelect, 2016, 1(21): 6961-6971.
ZHU A, ZHAO Q D, LI X Y, et al. BiFeO3/TiO2 Nanotube Arrays Composite Electrode: Construction, Characterization, and Enhanced Photoelectrochemical Properties[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 671-679.
BAI X, MA L Y, DAI Z Y, et al. Electrochemical Synthesis of P-Cu2O/n-TiO2 Heterojunction Electrode with Enhanced Photoelectrocatalytic Activity[J]. Materials Science in Semiconductor Processing, 2018, 74: 319-328.
王朝勇, 黄晓亚, 魏瑞朋, 等. 能量过滤磁控溅射技术制备Cu2O/TiO2复合薄膜及其光催化性能[J]. 表面技术, 2020, 49(6): 132-137.
SUN M J, HU J Y, ZHAI C Y, et al. A p-n Heterojunction of CuI/TiO2 with Enhanced Photoelectrocatalytic Activity for Methanol Electro-Oxidation[J]. Electrochimica Acta, 2017, 245: 863-871.
GUO J, FU W Y, YANG H B, et al. A NiO/TiO2junction Electrode Constructed Using Self-Organized TiO2 nanotube Arrays for Highly Efficient Photoelectrocatalytic Visible Light Activations[J]. Journal of Physics D: Applied Physics, 2010, 43(24): 245202-1-245202-8.
JIA L X, TAN X, YU T, et al. Enhanced Photoelectrocatalytic Performance of Temperature-Dependent 2D/1D BiOBr/TiO2-x Nanotubes[J]. Materials Research Bulletin, 2018, 105: 322-329.
LIU Z Y, WANG Q Y, CAO D D, et al. Vertical Grown BiOI Nanosheets on TiO2 NTs/Ti Meshes Toward Enhanced Photocatalytic Performances[J]. Journal of Alloys and Compounds, 2020, 820: 153109-1-153109-10.
GE M Z, CAO C Y, LI S H, et al. Enhanced Photocatalytic Performances of N-TiO2 Nanotubes by Uniform Creation of p-N Heterojunctions with P-Bi2O3 Quantum Dots[J]. Nanoscale, 2015, 7(27): 11552-11560.
孟龙, 汤春妮. Cu2O/TiO2纳米管异质结制备和光催化活性机理分析[J]. 当代化工, 2018, 47(9): 1771-1775.
VINODGOPAL K, KAMAT P V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films[J]. Environmental Science & Technology, 1995, 29(3): 841-845.
LI T T, WANG Z H, LIU C C, et al. TiO2 Nanotubes/Ag/MoS2 Meshy Photoelectrode with Excellent Photoelectrocatalytic Degradation Activity for Tetracycline Hydrochloride[J]. Nanomaterials, 2018, 8(9): 666-1-666-14.
FU J W, CAO S W, YU J G. Dual Z-Scheme Charge Transfer in TiO2-Ag-Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation[J]. Journal of Materiomics, 2015, 1(2): 124-133.
LIU Z Y, WANG Q Y, TAN X Y, et al. Solvothermal Preparation of Bi/Bi2O3 Nanoparticles on TiO2 NTs for the Enhanced Photoelectrocatalytic Degradation of Pollutants[J]. Journal of Alloys and Compounds, 2020, 815: 152478-1-152478-10.
WANG Q Y, ZHENG Q D, JIN R C, et al. Photoelectrocatalytic Removal of Organic Dyes and Cr(Ⅵ) Ions Using Ag3PO4 Nanoparticles Sensitized TiO2 Nanotube Arrays[J]. Materials Chemistry and Physics, 2017, 199: 209-215.
WANG W K, ZHU W Z, MAO L, et al. Two-Dimensional TiO2-g-C3N4 with both TiN and CO Bridges with Excellent Conductivity for Synergistic Photoelectrocatalytic Degradation of Bisphenol A[J]. Journal of Colloid and Interface Science, 2019, 557: 227-235.
SU J Y, GENG P, LI X Y, et al. Novel Phosphorus Doped Carbon Nitride Modified TiO2 Nanotube Arrays with Improved Photoelectrochemical Performance[J]. Nanoscale, 2015, 7(39): 16282-16289.
WANG S Q, ZHANG Z L, HUO W Y, et al. Preferentially Oriented Ag-TiO2 Nanotube Array Film: an Efficient Visible-Light-Driven Photocatalyst[J]. Journal of Hazardous Materials, 2020, 399: 123016-1-123016-10.
LING L J, WANG Y, ZHANG W, et al. Preparation of a Novel Ternary Composite of TiO2/UiO-66-NH2/Graphene Oxide with Enhanced Photocatalytic Activities[J]. Catalysis Letters, 2018, 148(7): 1978-1984.
WANG Y J, WU Q H, LI Y, et al. Controlled Fabrication of TiO2/C3N4 Core-Shell Nanowire Arrays: a Visible-Light-Responsive and Environmental-Friendly Electrode for Photoelectrocatalytic Degradation of Bisphenol A[J]. Journal of Materials Science, 2018, 53(15): 11015-11026.
KHAN M, FUNG C S L, KUMAR A, et al. Unravelling Mechanistic Reasons for Differences in Performance of Different Ti- and Bi-Based Magnetic Photocatalysts in Photocatalytic Degradation of PPCPS[J]. Science of the Total Environment, 2019, 686: 878-887.
HODGES B C, CATES E L, KIM J H. Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650.
FUNG C S L, KHAN M, KUMAR A, et al. Visible-Light-Driven Photocatalytic Removal of PPCPS Using Magnetically Separable Bismuth Oxybromo-Iodide Solid Solutions: Mechanisms, Pathways, and Reusability in Real Sewage[J]. Separation and Purification Technology, 2019, 216: 102-114.
李雨遥, 李治, 王云芸, 等. 氮掺杂SrTiO3/TiO2纳米棒异质结的制备及光催化活性[J]. 功能材料, 2020, 51(1): 1189-1195.
李长欣, 佟心宇, 徐娟娟, 等. N-S/TiO2薄膜太阳光下光电催化降解甲基橙的研究[J]. 工业水处理, 2020, 40(5): 35-39.