BANERJEE J, MAITI S, CHAKRABORTY S, et al. Impact of Machine Learning in Various Network Security Applications[C]//2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). Erode: IEEE, 2019.
WANG Z R, FANG B X. Application of Combined Kernel Function Artificial Intelligence Algorithm in Mobile Communication Network Security Authentication Mechanism[J]. The Journal of Supercomputing, 2019, 75(9): 5946-5964. doi: 10.1007/s11227-019-02896-5
KHALAF B A, MOSTAFA S A, MUSTAPHA A, et al. Comprehensive Review of Artificial Intelligence and Statistical Approaches in Distributed Denial of Service Attack and Defense Methods[J]. IEEE Access, 2019, 7: 51691-51713. doi: 10.1109/ACCESS.2019.2908998
KASONGO S M, SUN Y X. A Deep Long Short-Term Memory Based Classifier for Wireless Intrusion Detection System[J]. ICT Express, 2020, 6(2): 98-103. doi: 10.1016/j.icte.2019.08.004
LI W J, TUG S, MENG W Z, et al. Designing Collaborative Blockchained Signature-Based Intrusion Detection in IoT Environments[J]. Future Generation Computer Systems, 2019, 96: 481-489. doi: 10.1016/j.future.2019.02.064
VIEGAS E, SANTIN A, BESSANI A, et al. BigFlow: Real-Time and Reliable Anomaly-Based Intrusion Detection for High-Speed Networks[J]. Future Generation Computer Systems, 2019, 93: 473-485. doi: 10.1016/j.future.2018.09.051
POTLURI S, AHMED S, DIEDRICH C. Convolutional Neural Networks for Multi-Class Intrusion Detection System[C]//2018 6th International Conference on Mining Intelligence and Knowledge Exploration(MIKE). Napoca: Springer, 2018.
XU Y Y, LIU Z, LI Y M, et al. Intrusion Detection Based on Fusing Deep Neural Networks and Transfer Learning[M]//Communications in Computer and Information Science. Singapore: Springer, 2020.
WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection[J]. IEEE Access, 2018, 6: 1792-1806. doi: 10.1109/ACCESS.2017.2780250
WU P L, GUO H. LuNet: a Deep Neural Network for Network Intrusion Detection[C]//2019 IEEE Symposium Series on Computational Intelligence (SSCI). Xiamen: IEEE, 2019.
ALQATF M, YU L S, AL-HABIB M, et al. Deep Learning Approach Combining Sparse Autoencoder with SVM for Network Intrusion Detection[J]. IEEE Access, 2018, 6: 52843-52856. doi: 10.1109/ACCESS.2018.2869577
MIRZA A H, COSAN S. Computer Network Intrusion Detection Using Sequential LSTM Neural Networks Autoencoders[C]//2018 26th Signal Processing and Communications Applications Conference (SIU). Izmir: IEEE, 2018.
YAO H P, FU D Y, ZHANG P Y, et al. MSML: a Novel Multilevel Semi-Supervised Machine Learning Framework for Intrusion Detection System[J]. IEEE Internet of Things Journal, 2019, 6(2): 1949-1959. doi: 10.1109/JIOT.2018.2873125
JIANG E P. A Semi-Supervised Learning Model for Intrusion Detection[J]. Intelligent Decision Technologies, 2019, 13(3): 343-353. doi: 10.3233/IDT-180127
PHAM N T, FOO E, SURIADI S, et al. Improving Performance of Intrusion Detection System Using Ensemble Methods and Feature Selection[C]//Proceedings of the Australasian Computer Science Week Multiconference. New York: ACM, 2018.
SU T T, SUN H Z, ZHU J Q, et al. BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset[J]. IEEE Access, 2020, 8: 29575-29585. doi: 10.1109/ACCESS.2020.2972627
曹卫东, 许志香, 王静. 基于深度生成模型的半监督入侵检测算法[J]. 计算机科学, 2019, 46(3): 197-201.