XIA H, FANG B, ROUGHAN M, et al. A BasisEvolution Framework for Network Traffic Anomaly Detection[J]. Computer Networks, 2018, 135: 15-31. doi: 10.1016/j.comnet.2018.01.025
汪洋, 伍忠东, 朱婧. 基于深度序列加权核极限学习的入侵检测算法[J]. 计算机应用研究, 2020, 37(3): 829-832.
ATEŞ Ç, ÖZDEL S, YıLDıRıM M, et al. Network Anomaly Detection Using Header Information with Greedy Algorithm[C]//2019 27th Signal Processing and Communications Applications Conference (SIU). Sivas: IEEE, 2019.
BEHAL S, KUMAR K, SACHDEVA M. D-FACE: an Anomaly Based Distributed Approach for Early Detection of DDoS Attacks and Flash Events[J]. Journal of Network and Computer Applications, 2018, 111: 49-63. doi: 10.1016/j.jnca.2018.03.024
DAVID J, THOMAS C. Efficient DDoS Flood Attack Detection Using Dynamic Thresholding on Flow-Based Network Traffic[J]. Computers & Security, 2019, 82: 284-295.
YIN D, ZHANG L M, YANG K. A DDoS Attack Detection and Mitigation with Software-Defined Internet of Things Framework[J]. IEEE Access, 2018, 6: 24694-24705. doi: 10.1109/ACCESS.2018.2831284
IDHAMMAD M, AFDEL K, BELOUCH M. Semi-Supervised Machine Learning Approach for DDoS Detection[J]. Applied Intelligence, 2018, 48(10): 3193-3208. doi: 10.1007/s10489-018-1141-2
ARIVUDAINAMBI D, VARUN KUMAR K A, SIBI CHAKKARAVARTHY S. LION IDS: a Meta-Heuristics Approach to Detect DDoS Attacks Against Software-Defined Networks[J]. Neural Computing and Applications, 2019, 31(5): 1491-1501. doi: 10.1007/s00521-018-3383-7
刘敏, 滕华, 何先波. 基于核函数的软件定义网络DDoS实时安全系统[J]. 计算机应用研究, 2020, 37(3): 843-846, 850.
PANDEY V C, PEDDOJU S K, DESHPANDE P S. A Statistical and Distributed Packet Filter Against DDoS Attacks in Cloud Environment[J]. Sādhanā, 2018, 43(3): 1-9. doi: 10.1007/s12046-018-0800-7
ELEJLA O E, ANBAR M, BELATON B, et al. Flow-Based IDS for ICMPv6-Based DDoS Attacks Detection[J]. Arabian Journal for Science and Engineering, 2018, 43(12): 7757-7775. doi: 10.1007/s13369-018-3149-7
KRASNOV A E, STATE INSTITUTE OF INFORMATION TECHNOLOGIES AND TELECOMMUNICATIONS, NADEZHDIN E N, et al. Detecting DDoS Attacks by Analyzing the Dynamics and Interrelation of Network Traffic Characteristics[J]. Vestnik Udmurtskogo Universiteta Matematika Mekhanika Komp'Yuternye Nauki, 2018, 28(3): 407-418. doi: 10.20537/vm180310
YAN B H, HAN G D. Effective Feature Extraction via Stacked Sparse Autoencoder to Improve Intrusion Detection System[J]. IEEE Access, 2018, 6: 41238-41248. doi: 10.1109/ACCESS.2018.2858277
WANG M, LU Y Q, QIN J C. A Dynamic MLP-Based DDoS Attack Detection Method Using Feature Selection and Feedback[J]. Computers & Security, 2020, 88: 101645.
KESAVAMOORTHY R, RUBA SOUNDAR K. Swarm Intelligence Based Autonomous DDoS Attack Detection and Defense Using Multi Agent System[J]. Cluster Computing, 2019, 22(4): 9469-9476. doi: 10.1007%2Fs10586-018-2365-y
SU Y Z, MENG X R, MENG Q W, et al. DDoS Attack Detection Algorithm Based on Hybrid Traffic Prediction Model[C]//2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Qingdao: IEEE, 2018.