GHANI N A, HAMID S, TARGIO HASHEM I A, et al. Social Media Big Data Analytics: a Survey[J]. Computers in Human Behavior, 2019, 101: 417-428. doi: 10.1016/j.chb.2018.08.039
|
姜丽丽, 李叶飞, 豆龙龙, 等. 面向大数据的图模式挖掘概率算法[J]. 计算机应用研究, 2020, 37(12): 3545-3551.
|
GARCÍA-GIL D, LUENGO J, GARCÍA S, et al. Enabling Smart Data: Noise Filtering in Big Data Classification[J]. Information Sciences, 2019, 479: 135-152. doi: 10.1016/j.ins.2018.12.002
|
WANG Y C, KUNG L, BYRD T A. Big Data Analytics: Understanding Its Capabilities and Potential Benefits for Healthcare Organizations[J]. Technological Forecasting and Social Change, 2018, 126: 3-13. doi: 10.1016/j.techfore.2015.12.019
|
CHENG Y, CHEN K, SUN H M, et al. Data and Knowledge Mining with Big Data towards Smart Production[J]. Journal of Industrial Information Integration, 2018, 9: 1-13. doi: 10.1016/j.jii.2017.08.001
|
LUECHTEFELD T, MARSH D, ROWLANDS C, et al. Machine Learning of Toxicological Big Data Enables Read-across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility[J]. Toxicological Sciences, 2018, 165(1): 198-212. doi: 10.1093/toxsci/kfy152
|
VARATHARAJAN R, MANOGARAN G, PRIYAN M K. A Big Data Classification Approach Using LDA with an Enhanced SVM Method for ECG Signals in Cloud Computing[J]. Multimedia Tools and Applications, 2018, 77(8): 10195-10215. doi: 10.1007/s11042-017-5318-1
|
LAKSHMANAPRABU S K, SHANKAR K, ILAYARAJA M, et al. Random Forest for Big Data Classification in the Internet of Things Using Optimal Features[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2609-2618. doi: 10.1007/s13042-018-00916-z
|
张龙翔, 曹云鹏, 王海峰. 面向大数据复杂应用的GPU协同计算模型[J]. 计算机应用研究, 2020, 37(7): 2049-2053.
|
CARVALHO A M D, PRATI R C. Improving kNN Classification under Unbalanced Data. a New Geometric Oversampling Approach[C]//2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: IEEE, 2018.
|
HASANIN T, KHOSHGOFTAAR T M, LEEVY J, et al. Investigating Random Undersampling and Feature Selection on Bioinformatics Big Data[C]//2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). Newark: IEEE, 2019.
|
POLAT K. A Hybrid Approach to Parkinson Disease Classification Using Speech Signal: The Combination of SMOTE and Random Forests[C]//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). Istanbul: IEEE, 2019.
|
郑建华, 刘双印, 贺超波, 等. 基于混合采样策略的改进随机森林不平衡数据分类算法[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 113-123.
|
HASSIB E M, EL-DESOUKY A I, LABIB L M, et al. WOA+BRNN: an Imbalanced Big Data Classification Framework Using Whale Optimization and Deep Neural Network[J]. Soft Computing, 2020, 24(8): 5573-5592. doi: 10.1007/s00500-019-03901-y
|
UTOMO O K, SURANTHA N, ISA S M, et al. Automatic Sleep Stage Classification Using Weighted ELM and PSO on Imbalanced Data from Single Lead ECG[J]. Procedia Computer Science, 2019, 157: 321-328. doi: 10.1016/j.procs.2019.08.173
|