SIVARAJAH U, KAMAL M M, IRANI Z, et al. Critical Analysis of Big Data Challenges and Analytical Methods[J]. Journal of Business Research, 2017, 70: 263-286. doi: 10.1016/j.jbusres.2016.08.001
GVNTHER W A, REZAZADE MEHRIZI M H, HUYSMAN M, et al. Debating Big Data: a Literature Review on Realizing Value from Big Data[J]. The Journal of Strategic Information Systems, 2017, 26(3): 191-209. doi: 10.1016/j.jsis.2017.07.003
刘铭, 黄凡玲, 傅彦铭, 等. 改进的人工蜂群优化支持向量机算法在入侵检测中的应用[J]. 计算机应用与软件, 2017, 34(1): 230-235, 246.
ABUROMMAN A A, REAZ M B I. A Survey of Intrusion Detection Systems Based on Ensemble and Hybrid Classifiers[J]. Computers & Security, 2017, 65: 135-152.
KABIR E, HU J K, WANG H, et al. A Novel Statistical Technique for Intrusion Detection Systems[J]. Future Generation Computer Systems, 2018, 79: 303-318. doi: 10.1016/j.future.2017.01.029
ZHANG Q C, YANG L T, CHEN Z K, et al. A Survey on Deep Learning for Big Data[J]. Information Fusion, 2018, 42: 146-157. doi: 10.1016/j.inffus.2017.10.006
ZHAO L, ZHOU Y H, LU H P, et al. Parallel Computing Method of Deep Belief Networks and Its Application to Traffic Flow Prediction[J]. Knowledge-Based Systems, 2019, 163: 972-987. doi: 10.1016/j.knosys.2018.10.025
FISCHER T, KRAUSS C. Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions[J]. European Journal of Operational Research, 2018, 270(2): 654-669. doi: 10.1016/j.ejor.2017.11.054
VINAYAKUMAR R, ALAZAB M, SOMAN K P, et al. Deep Learning Approach for Intelligent Intrusion Detection System[J]. IEEE Access, 2019, 7: 41525-41550. doi: 10.1109/ACCESS.2019.2895334
FAKER O, DOGDU E. Intrusion Detection Using Big Data and Deep Learning Techniques[C]//Proceedings of the 2019 ACM Southeast Conference on ZZZ - ACM SE'19. New York: ACM Press, 2019.
KHAN F A, GUMAEI A, DERHAB A, et al. A Novel Two-Stage Deep Learning Model for Efficient Network Intrusion Detection[J]. IEEE Access, 2019, 7: 30373-30385. doi: 10.1109/ACCESS.2019.2899721
DERHAB A, GUERROUMI M, GUMAEI A, et al. Blockchain and Random Subspace Learning-Based IDS for SDN-Enabled Industrial IoT Security[J]. Sensors (Basel, Switzerland), 2019, 19(14): E3119. doi: 10.3390/s19143119
CHEN H M, ENGKVIST O, WANG Y H, et al. The Rise of Deep Learning in Drug Discovery[J]. Drug Discovery Today, 2018, 23(6): 1241-1250.
ZHANG C, SUN G Y, FANG Z M, et al. Caffeine: Toward Uniformed Representation and Acceleration for Deep Convolutional Neural Networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2072-2085. doi: 10.1109/TCAD.2017.2785257
GAO C, YAN J K, ZHOU S H, et al. Long Short-Term Memory-Based Deep Recurrent Neural Networks for Target Tracking[J]. Information Sciences, 2019, 502: 279-296.
MOUSTAFA N, SLAY J. The Evaluation of Network Anomaly Detection Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set[J]. Information Security Journal: A Global Perspective, 2016, 25(1/3): 18-31.