郑军辉, 叶素芬, 喻景权. 蔬菜作物连作障碍产生原因及生物防治[J]. 中国蔬菜, 2004(3): 57-59.
吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施[J]. 东北农业大学学报, 2000, 31(3): 241-247.
王靖, 黄云, 李小兰, 等. 十字花科根肿病研究进展[J]. 植物保护, 2011, 37(6): 153-158. doi: 10.3969/j.issn.0529-1542.2011.06.031
乔俊卿, 陈志谊, 刘邮洲, 等. 茄科作物青枯病研究进展[J]. 植物病理学报, 2013, 43(1): 1-10. doi: 10.3969/j.issn.0412-0914.2013.01.001
王喜刚, 杨波, 郭成瑾, 等. 宁夏回族自治区马铃薯镰刀菌根腐病病原菌的分离鉴定与致病性测定[J]. 植物保护学报, 2020, 47(3): 609-619.
崔鑫, 岳向国, 李斌, 等. 蔬菜作物根结线虫病害防治研究进展[J]. 中国蔬菜, 2017(10): 31-38.
郑良永, 胡剑非, 林昌华, 等. 作物连作障碍的产生及防治[J]. 热带农业科学, 2005, 25(2): 58-62.
DU J F, GAO Q X, JI C, et al. Bacillus licheniformis JF-22 to Control Meloidogyne incognita and Its Effect on Tomato Rhizosphere Microbial Community[J]. Frontiers in Microbiology, 2022, 13: 863341. doi: 10.3389/fmicb.2022.863341
张福锁, 申建波, 冯固. 根际生态学[M]. 北京: 中国农业大学出版社, 2009.
BAKKER P A H M, BERENDSEN R L, DOORNBOS R F, et al. The Rhizosphere Revisited: Root Microbiomics[J]. Frontiers in Plant Science, 2013, 4: 165.
卢维宏, 张乃明, 包立, 等. 我国设施栽培连作障碍特征与成因及防治措施的研究进展[J]. 土壤, 2020, 52(4): 651-658.
KUZYAKOV Y, DOMANSKI G. Carbon Input by Plants into the Soil. Review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310.
LIU Q, CHENG L, NIAN H, et al. Linking Plant Functional Genes to Rhizosphere Microbes: A Review[J]. Plant Biotechnol J, 2023, 21(5): 902-917. doi: 10.1111/pbi.13950
毕开涛, 韩伟, 陈佛源, 等. 基于根际生物屏障构建的烟草青枯病绿色防控技术的应用研究[J]. 植物医学, 2024, 3(1): 22-32. doi: 10.13718/j.cnki.zwyx.2024.01.003
赵辉, 赵铭钦, 程玉渊, 等. 河南南阳烟区不同类型土壤的根际和非根际微生物及酶活性变化[J]. 土壤通报, 2010, 41(5): 1057-1063.
程尉烜, 康业斌. 生物羊粪对烟株农艺性状及其根际土壤微生物与酶活性的影响[J]. 江西农业学报, 2021, 33(11): 121-125.
丁伟, 刘晓姣. 植物医学的新概念——生物屏障[J]. 植物医生, 2019, 32(1): 1-6.
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The Rhizosphere Microbiome and Plant Health[J]. Trends in Plant Science, 2012, 17(8): 478-486. doi: 10.1016/j.tplants.2012.04.001
丁伟, 李石力. 植物医学的新概念——土壤免疫[J]. 植物医生, 2019, 32(2): 1-7.
刘烈花. 利用土壤微生物多样性控制十字花科根肿病的研究进展[J]. 植物医生, 2020(5): 32-35.
TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-Microbiome Interactions: From Community Assembly to Plant Health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. doi: 10.1038/s41579-020-0412-1
CAO Y, YANG Z X, YANG D M, et al. Tobacco Root Microbial Community Composition Significantly Associated with Root-Knot Nematode Infections: Dynamic Changes in Microbiota and Growth Stage[J]. Frontiers in Microbiology, 2022, 13: 807057. doi: 10.3389/fmicb.2022.807057
游川, 杨天杰, 周新刚, 等. 连作根系分泌物加剧土传病害的机制和缓解措施研究进展[J]. 土壤学报, 2024, 61(5): 1201-1211.
LIU X J, JIANG Q P, HU X Q, et al. Soil Microbial Carbon Metabolism Reveals a Disease Suppression Pattern in Continuous Ginger Mono-Cropping Fields[J]. Applied Soil Ecology, 2019, 144: 165-169. doi: 10.1016/j.apsoil.2019.07.020
ZHANG S T, JIANG Q P, LIU X J, et al. Plant Growth Promoting Rhizobacteria Alleviate Aluminum Toxicity and Ginger Bacterial Wilt in Acidic Continuous Cropping Soil[J]. Frontiers in Microbiology, 2020, 11: 569512. doi: 10.3389/fmicb.2020.569512
何洪令. 烟草青枯菌拮抗细菌的筛选鉴定及其生防特性研究[D], 重庆: 西南大学, 2021.
ZHAO M, ZHAO J, YUAN J, et al. Root Exudates Drive Soil-Microbe-Nutrient Feedbacks in Response to Plant Growth[J]. Plant Cell Environ, 2021, 44(2): 613-628. doi: 10.1111/pce.13928
MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria[J]. Science, 2011, 332(6033): 1097-1100. doi: 10.1126/science.1203980
CASTRILLO G, TEIXEIRA P J P L, PAREDES S H, et al. Root Microbiota Drive Direct Integration of Phosphate Stress and Immunity[J]. Nature, 2017, 543(7646): 513-518. doi: 10.1038/nature21417
ZHOU F, EMONET A, DÉNERVAUD TENDON V, et al. Co-Incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots[J]. Cell, 2020, 180(3): 440-453.e18. doi: 10.1016/j.cell.2020.01.013