王小晓, 吴胜军, 王雨, 等. 潜流人工湿地不同运行方式处理生活污水研究[J]. 西南师范大学学报(自然科学版), 2016, 41(9): 24-29.
司英明, 刘永军, 武钰坤, 等. 人工湿地不同工艺的污染物去除及微生物群落结构分析[J]. 西南大学学报(自然科学版), 2012, 34(8): 122-130.
ZHOU Z C, CHEN J, GU W J, et al. Biogeographic Pattern of the nirS Gene-Targeted Anammox Bacterial Community and Composition in the Northern South China Sea and a Coastal Mai Po Mangrove Wetland [J]. Applied Microbiology and Biotechnology, 2020, 104(7): 3167-3181. doi: 10.1007/s00253-020-10415-3
YIN Y C, YAN Z Z. Variations of Soil Bacterial Diversity and Metabolic Function with Tidal Flat Elevation Gradient in an Artificial Mangrove Wetland [J]. Science of the Total Environment, 2020, 718: 137385-1-137385-11.
ZHAO Y Y, BU C N, YANG H L, et al. Survey of Dissimilatory Nitrate Reduction to Ammonium Microbial Community at National Wetland of Shanghai, China [J]. Chemosphere, 2020, 250: 126195-1-126195-10.
HE T, GUAN W, LUAN Z Y, et al. Spatiotemporal Variation of Bacterial and Archaeal Communities in a Pilot-Scale Constructed Wetland for Surface Water Treatment [J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1479-1488. doi: 10.1007/s00253-015-7072-5
LVNSMANN V, KAPPELMEYER U, BENNDORF R, et al. In Situ Protein-SIP Highlights Burkholderiaceae as Key Players Degrading Toluene by Para Ring Hydroxylation in a Constructed Wetland Model [J]. Environmental Microbiology, 2016, 18(4): 1176-1186. doi: 10.1111/1462-2920.13133
CAO K F, ZHI R, ZHANG G M. Photosynthetic Bacteria Wastewater Treatment with the Production of Value-Added Products: a Review [J]. Bioresource Technology, 2020, 299: 122648-1-122648-10.
CHITAPORNPAN S, CHIEMCHAISRI C, CHIEMCHAISRI W, et al. OrganicCarbon Recovery and Photosynthetic Bacteria Population in an Anaerobic Membrane Photo-Bioreactor Treating Food Processing Wastewater [J]. Bioresource Technology, 2013, 141: 65-74. doi: 10.1016/j.biortech.2013.02.048
EDWARDSONC F, PLANER-FRIEDRICH B, HOLLIBAUGH J T. Transformation of Monothioarsenate by Haloalkaliphilic, Anoxygenic Photosynthetic Purple Sulfur Bacteria [J]. FEMS Microbiology Ecology, 2014, 90(3): 858-868. doi: 10.1111/1574-6941.12440
AMEZAGA J M, AMTMANN A, BIGGS C A, et al. Biodesalination: a Case Study for Applications of Photosynthetic Bacteria in Water Treatment [J]. Plant Physiology, 2014, 164(4): 1661-1676. doi: 10.1104/pp.113.233973
KIS M, SIPKA G, ASZTALOS E, et al. Purple Non-Sulfur Photosynthetic Bacteria Monitor Environmental Stresses [J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 151: 110-117. doi: 10.1016/j.jphotobiol.2015.07.017
HESSW R, BERGHOFF B A, WILDE A, et al. Riboregulators and the Role of Hfq in Photosynthetic Bacteria [J]. RNA Biology, 2014, 11(5): 413-426. doi: 10.4161/rna.28035
FERRERA I, BORREGO C M, SALAZAR G, et al. MarkedSeasonality of Aerobic Anoxygenic Phototrophic Bacteria in the Coastal NW Mediterranean Sea as Revealed by Cell Abundance, Pigment Concentration and Pyrosequencing of pufM Gene [J]. Environmental Microbiology, 2014, 16(9): 2953-2965. doi: 10.1111/1462-2920.12278
HIROSE S, NAGASHIMAK V, MATSUURA K, et al. Diversity of Purple Phototrophic Bacteria, Inferred from pufM Gene, within Epilithic Biofilm in Tama River, Japan [J]. Microbes Environ, 2012, 27(3): 327-329. doi: 10.1264/jsme2.ME11306
SALKA I, ČUPEROVÁ Z, MAŠÍN M, et al. Rhodoferax-Related pufM Gene Cluster Dominates the Aerobic Anoxygenic Phototrophic Communities in German Freshwater Lakes [J]. Environmental Microbiology, 2011, 13(11): 2865-2875. doi: 10.1111/j.1462-2920.2011.02562.x
MARTÍNEZ-GARCÍA M, DÍAZ-VALDÉS M, ANTÓN J. Diversity of pufM Genes, Involved in Aerobic Anoxygenic Photosynthesis, in the Bacterial Communities Associated with Colonial Ascidians [J]. FEMS Microbiology Ecology, 2010, 71(3): 387-398. doi: 10.1111/j.1574-6941.2009.00816.x
TANK M, THIEL V, IMHOFF J F. Phylogenetic Relationship of Phototrophic Purple Sulfur Bacteria According to pufL and pufM Genes [J]. International Microbiology, 2009, 12(3): 175-185.
WAIDNER L A, KIRCHMAN D L. Diversity andDistribution of Ecotypes of the Aerobic Anoxygenic Phototrophy Gene pufM in the Delaware Estuary [J]. Applied and Environmental Microbiology, 2008, 74(13): 4012-4021. doi: 10.1128/AEM.02324-07
ZENG Y H, CHEN X H, JIAO N Z. GeneticDiversity Assessment of Anoxygenic Photosynthetic Bacteria by Distance-Based Grouping Analysis of pufM Sequences [J]. Letters in Applied Microbiology, 2007, 45(6): 639-645. doi: 10.1111/j.1472-765X.2007.02247.x
ZENG Y, JIAO N. SourceEnvironment Feature Related Phylogenetic Distribution Pattern of Anoxygenic Photosynthetic Bacteria as Revealed by pufM Analysis [J]. Journal of Microbiology (Seoul, Korea), 2007, 45(3): 205-212.
HU Y, DU H, JIAO N, et al. AbundantPresence of the Gamma-Like Proteobacterial pufM Gene in Oxic Seawater [J]. FEMS Microbiology Letters, 2006, 263(2): 200-206. doi: 10.1111/j.1574-6968.2006.00421.x
FECSKEOVÁ L K, PIWOSZ K, HANUSOVÁ M, et al. Diel Changes and Diversity of pufM Expression in Freshwater Communities of Anoxygenic Phototrophic Bacteria [J]. Scientific Reports, 2019, 9: 18766-1-18766-11.
WU P, MO W T, WANG Y L, et al. RETRACTED: Effluent Containing Rubrivivax Gelatinosus Promoting the Yield, Digestion System, Disease Resistance, mTOR and NF-kB Signaling Pathway, Intestinal Microbiota and Aquaculture Water Quality of Crucian Carp [J]. Fish & Shellfish Immunology, 2019, 94: 166-174.
KIS M, SIPKA G, AYAYDIN F, et al. The Biophysics of a Critical Phenomenon: Colonization and Sedimentation of the Photosynthetic Bacteria Rubrivivax Gelatinosus [J]. European Biophysics Journal, 2018, 47(2): 139-149. doi: 10.1007/s00249-017-1236-4
STEUNOU A S, LIOTENBERG S, SOLER M N, et al. EmbRS a New Two-Component System that Inhibits Biofilm Formation and Saves Rubrivivax Gelatinosus from Sinking [J]. MicrobiologyOpen, 2013, 2(3): 431-446. doi: 10.1002/mbo3.82
CURTIS P D. Essential Genes Predicted in the Genome ofRubrivivax Gelatinosus [J]. Journal of Bacteriology, 2016, 198(16): 2244-2250. doi: 10.1128/JB.00344-16
NAGASHIMA S, KAMIMURA A, SHIMIZU T, et al. CompleteGenome Sequence of Phototrophic Betaproteobacterium Rubrivivax Gelatinosus IL144 [J]. Journal of Bacteriology, 2012, 194(13): 3541-3542. doi: 10.1128/JB.00511-12
WU P, WANG Y L, ZHANG G M, et al. Improving Biomass Resource Recycling Capacity of Rubrivivax Gelatinosus Cultivated in Wastewater through Regulating the Generation and Use of Energy [J]. Environmental Technology, 2014, 35(17-20): 2604-2609.
WU P, LI J Z, WANG Y L, et al. Improving the Growth of Rubrivivax Gelatinosus Cultivated in Sewage Environment [J]. Bioprocess and Biosystems Engineering, 2015, 38(1): 79-84. doi: 10.1007/s00449-014-1245-y
WAWROUSEK K, NOBLE S, KORLACH J, et al. GenomeAnnotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax Gelatinosus [J]. PLoS One, 2014, 9(12): e114551-1-e114551-18.
KASALICKÝ V, ZENG Y H, PIWOSZ K, et al. Aerobic Anoxygenic Photosynthesis is Commonly Present within the Genus Limnohabitans [J]. Applied and Environmental Microbiology, 2018, 84(1): e02116-1-e02116-17.
RUIZ-GONZÁLEZ C, GARCIA-CHAVES M C, FERRERA I, et al. Taxonomic Differences Shape the Responses of Freshwater Aerobic Anoxygenic Phototrophic Bacterial Communities to Light and Predation [J]. Molecular Ecology, 2020, 29(7): 1267-1283. doi: 10.1111/mec.15404
ZENG Y, KASALICKÝ V, ŠIMEK K, et al. Genome Sequences of Two Freshwater Betaproteobacterial Isolates, Limnohabitans Species Strains Rim28 and Rim47, Indicate Their Capabilities as both Photoautotrophs and Ammonia Oxidizers [J]. J Bacteriol, 2012, 194(22): 6302-6303. doi: 10.1128/JB.01481-12
PROPS R, DENEF V J. Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater GenusLimnohabitans [J]. Applied and Environmental Microbiology, 2020, 86(10): e00140-1-e00140-20.
NUY J K, HOETZINGER M, HAHN M W, et al. Ecological Differentiation in Two Major Freshwater Bacterial Taxaalong Environmental Gradients [J]. Frontiers in Microbiology, 2020, 11: 00154-1-00154-16. doi: 10.3389/fmicb.2020.01541
ZHANG L, FANG W K, LI X C, et al. Strong Linkages between Dissolved Organic Matter and the Aquatic Bacterial Community in an Urban River [J]. Water Research, 2020, 184: 116089-1-116089-11.
HORŇÁK K, CORNO G. Every Coin Has a back Side: Invasion by Limnohabitans Planktonicus Promotes the Maintenance of Species Diversity in Bacterial Communities [J]. PLoS One, 2012, 7(12): e51576-1-e51576-8.
YANPIRAT P, NAKATSUJI Y, HIRAGA S, et al. Lanthanide-Dependent Methanol and Formaldehyde Oxidation inMethylobacterium Aquaticum Strain 22A [J]. Microorganisms, 2020, 8(6): 822-1-822-17.
TANI A, OGURA Y, HAYASHI T, et al. Complete Genome Sequence ofMethylobacterium Aquaticum Strain 22A, Isolated from Racomitrium Japonicum Moss [J]. Genome Announcements, 2015, 3(2): e00266-1-e00266-15.
KURTH J M, BRITO J A, REUTER J, et al. Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase [J]. Journal of Biological Chemistry, 2016, 291(48): 24804-24818. doi: 10.1074/jbc.M116.753863
PRANGE A, DE ARZBERGER I, ENGEMANN C, et al. In Situ Analysis of Sulfur in the Sulfur Globules of Phototrophic Sulfur Bacteria by X-Ray Absorption near Edge Spectroscopy [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1428(2-3): 446-454. doi: 10.1016/S0304-4165(99)00095-1
ZHENG Q, LIU Y, JEANTHON C, et al. Geographic Impact on Genomic Divergence as Revealed by Comparison of NineCitromicrobial Genomes [J]. Applied and Environmental Microbiology, 2016, 82(24): 7205-7216. doi: 10.1128/AEM.02495-16