王小晓, 吴胜军, 王雨, 等. 潜流人工湿地不同运行方式处理生活污水研究[J]. 西南师范大学学报(自然科学版), 2016, 41(9): 24-29.
|
司英明, 刘永军, 武钰坤, 等. 人工湿地不同工艺的污染物去除及微生物群落结构分析[J]. 西南大学学报(自然科学版), 2012, 34(8): 122-130.
|
ZHOU Z C, CHEN J, GU W J, et al. Biogeographic Pattern of the nirS Gene-Targeted Anammox Bacterial Community and Composition in the Northern South China Sea and a Coastal Mai Po Mangrove Wetland [J]. Applied Microbiology and Biotechnology, 2020, 104(7): 3167-3181. doi: 10.1007/s00253-020-10415-3
|
YIN Y C, YAN Z Z. Variations of Soil Bacterial Diversity and Metabolic Function with Tidal Flat Elevation Gradient in an Artificial Mangrove Wetland [J]. Science of the Total Environment, 2020, 718: 137385-1-137385-11.
|
ZHAO Y Y, BU C N, YANG H L, et al. Survey of Dissimilatory Nitrate Reduction to Ammonium Microbial Community at National Wetland of Shanghai, China [J]. Chemosphere, 2020, 250: 126195-1-126195-10.
|
HE T, GUAN W, LUAN Z Y, et al. Spatiotemporal Variation of Bacterial and Archaeal Communities in a Pilot-Scale Constructed Wetland for Surface Water Treatment [J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1479-1488. doi: 10.1007/s00253-015-7072-5
|
LVNSMANN V, KAPPELMEYER U, BENNDORF R, et al. In Situ Protein-SIP Highlights Burkholderiaceae as Key Players Degrading Toluene by Para Ring Hydroxylation in a Constructed Wetland Model [J]. Environmental Microbiology, 2016, 18(4): 1176-1186. doi: 10.1111/1462-2920.13133
|
CAO K F, ZHI R, ZHANG G M. Photosynthetic Bacteria Wastewater Treatment with the Production of Value-Added Products: a Review [J]. Bioresource Technology, 2020, 299: 122648-1-122648-10.
|
CHITAPORNPAN S, CHIEMCHAISRI C, CHIEMCHAISRI W, et al. OrganicCarbon Recovery and Photosynthetic Bacteria Population in an Anaerobic Membrane Photo-Bioreactor Treating Food Processing Wastewater [J]. Bioresource Technology, 2013, 141: 65-74. doi: 10.1016/j.biortech.2013.02.048
|
EDWARDSONC F, PLANER-FRIEDRICH B, HOLLIBAUGH J T. Transformation of Monothioarsenate by Haloalkaliphilic, Anoxygenic Photosynthetic Purple Sulfur Bacteria [J]. FEMS Microbiology Ecology, 2014, 90(3): 858-868. doi: 10.1111/1574-6941.12440
|
AMEZAGA J M, AMTMANN A, BIGGS C A, et al. Biodesalination: a Case Study for Applications of Photosynthetic Bacteria in Water Treatment [J]. Plant Physiology, 2014, 164(4): 1661-1676. doi: 10.1104/pp.113.233973
|
KIS M, SIPKA G, ASZTALOS E, et al. Purple Non-Sulfur Photosynthetic Bacteria Monitor Environmental Stresses [J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 151: 110-117. doi: 10.1016/j.jphotobiol.2015.07.017
|
HESSW R, BERGHOFF B A, WILDE A, et al. Riboregulators and the Role of Hfq in Photosynthetic Bacteria [J]. RNA Biology, 2014, 11(5): 413-426. doi: 10.4161/rna.28035
|
FERRERA I, BORREGO C M, SALAZAR G, et al. MarkedSeasonality of Aerobic Anoxygenic Phototrophic Bacteria in the Coastal NW Mediterranean Sea as Revealed by Cell Abundance, Pigment Concentration and Pyrosequencing of pufM Gene [J]. Environmental Microbiology, 2014, 16(9): 2953-2965. doi: 10.1111/1462-2920.12278
|
HIROSE S, NAGASHIMAK V, MATSUURA K, et al. Diversity of Purple Phototrophic Bacteria, Inferred from pufM Gene, within Epilithic Biofilm in Tama River, Japan [J]. Microbes Environ, 2012, 27(3): 327-329. doi: 10.1264/jsme2.ME11306
|
SALKA I, ČUPEROVÁ Z, MAŠÍN M, et al. Rhodoferax-Related pufM Gene Cluster Dominates the Aerobic Anoxygenic Phototrophic Communities in German Freshwater Lakes [J]. Environmental Microbiology, 2011, 13(11): 2865-2875. doi: 10.1111/j.1462-2920.2011.02562.x
|
MARTÍNEZ-GARCÍA M, DÍAZ-VALDÉS M, ANTÓN J. Diversity of pufM Genes, Involved in Aerobic Anoxygenic Photosynthesis, in the Bacterial Communities Associated with Colonial Ascidians [J]. FEMS Microbiology Ecology, 2010, 71(3): 387-398. doi: 10.1111/j.1574-6941.2009.00816.x
|
TANK M, THIEL V, IMHOFF J F. Phylogenetic Relationship of Phototrophic Purple Sulfur Bacteria According to pufL and pufM Genes [J]. International Microbiology, 2009, 12(3): 175-185.
|
WAIDNER L A, KIRCHMAN D L. Diversity andDistribution of Ecotypes of the Aerobic Anoxygenic Phototrophy Gene pufM in the Delaware Estuary [J]. Applied and Environmental Microbiology, 2008, 74(13): 4012-4021. doi: 10.1128/AEM.02324-07
|
ZENG Y H, CHEN X H, JIAO N Z. GeneticDiversity Assessment of Anoxygenic Photosynthetic Bacteria by Distance-Based Grouping Analysis of pufM Sequences [J]. Letters in Applied Microbiology, 2007, 45(6): 639-645. doi: 10.1111/j.1472-765X.2007.02247.x
|
ZENG Y, JIAO N. SourceEnvironment Feature Related Phylogenetic Distribution Pattern of Anoxygenic Photosynthetic Bacteria as Revealed by pufM Analysis [J]. Journal of Microbiology (Seoul, Korea), 2007, 45(3): 205-212.
|
HU Y, DU H, JIAO N, et al. AbundantPresence of the Gamma-Like Proteobacterial pufM Gene in Oxic Seawater [J]. FEMS Microbiology Letters, 2006, 263(2): 200-206. doi: 10.1111/j.1574-6968.2006.00421.x
|
FECSKEOVÁ L K, PIWOSZ K, HANUSOVÁ M, et al. Diel Changes and Diversity of pufM Expression in Freshwater Communities of Anoxygenic Phototrophic Bacteria [J]. Scientific Reports, 2019, 9: 18766-1-18766-11.
|
WU P, MO W T, WANG Y L, et al. RETRACTED: Effluent Containing Rubrivivax Gelatinosus Promoting the Yield, Digestion System, Disease Resistance, mTOR and NF-kB Signaling Pathway, Intestinal Microbiota and Aquaculture Water Quality of Crucian Carp [J]. Fish & Shellfish Immunology, 2019, 94: 166-174.
|
KIS M, SIPKA G, AYAYDIN F, et al. The Biophysics of a Critical Phenomenon: Colonization and Sedimentation of the Photosynthetic Bacteria Rubrivivax Gelatinosus [J]. European Biophysics Journal, 2018, 47(2): 139-149. doi: 10.1007/s00249-017-1236-4
|
STEUNOU A S, LIOTENBERG S, SOLER M N, et al. EmbRS a New Two-Component System that Inhibits Biofilm Formation and Saves Rubrivivax Gelatinosus from Sinking [J]. MicrobiologyOpen, 2013, 2(3): 431-446. doi: 10.1002/mbo3.82
|
CURTIS P D. Essential Genes Predicted in the Genome ofRubrivivax Gelatinosus [J]. Journal of Bacteriology, 2016, 198(16): 2244-2250. doi: 10.1128/JB.00344-16
|
NAGASHIMA S, KAMIMURA A, SHIMIZU T, et al. CompleteGenome Sequence of Phototrophic Betaproteobacterium Rubrivivax Gelatinosus IL144 [J]. Journal of Bacteriology, 2012, 194(13): 3541-3542. doi: 10.1128/JB.00511-12
|
WU P, WANG Y L, ZHANG G M, et al. Improving Biomass Resource Recycling Capacity of Rubrivivax Gelatinosus Cultivated in Wastewater through Regulating the Generation and Use of Energy [J]. Environmental Technology, 2014, 35(17-20): 2604-2609.
|
WU P, LI J Z, WANG Y L, et al. Improving the Growth of Rubrivivax Gelatinosus Cultivated in Sewage Environment [J]. Bioprocess and Biosystems Engineering, 2015, 38(1): 79-84. doi: 10.1007/s00449-014-1245-y
|
WAWROUSEK K, NOBLE S, KORLACH J, et al. GenomeAnnotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax Gelatinosus [J]. PLoS One, 2014, 9(12): e114551-1-e114551-18.
|
KASALICKÝ V, ZENG Y H, PIWOSZ K, et al. Aerobic Anoxygenic Photosynthesis is Commonly Present within the Genus Limnohabitans [J]. Applied and Environmental Microbiology, 2018, 84(1): e02116-1-e02116-17.
|
RUIZ-GONZÁLEZ C, GARCIA-CHAVES M C, FERRERA I, et al. Taxonomic Differences Shape the Responses of Freshwater Aerobic Anoxygenic Phototrophic Bacterial Communities to Light and Predation [J]. Molecular Ecology, 2020, 29(7): 1267-1283. doi: 10.1111/mec.15404
|
ZENG Y, KASALICKÝ V, ŠIMEK K, et al. Genome Sequences of Two Freshwater Betaproteobacterial Isolates, Limnohabitans Species Strains Rim28 and Rim47, Indicate Their Capabilities as both Photoautotrophs and Ammonia Oxidizers [J]. J Bacteriol, 2012, 194(22): 6302-6303. doi: 10.1128/JB.01481-12
|
PROPS R, DENEF V J. Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater GenusLimnohabitans [J]. Applied and Environmental Microbiology, 2020, 86(10): e00140-1-e00140-20.
|
NUY J K, HOETZINGER M, HAHN M W, et al. Ecological Differentiation in Two Major Freshwater Bacterial Taxaalong Environmental Gradients [J]. Frontiers in Microbiology, 2020, 11: 00154-1-00154-16. doi: 10.3389/fmicb.2020.01541
|
ZHANG L, FANG W K, LI X C, et al. Strong Linkages between Dissolved Organic Matter and the Aquatic Bacterial Community in an Urban River [J]. Water Research, 2020, 184: 116089-1-116089-11.
|
HORŇÁK K, CORNO G. Every Coin Has a back Side: Invasion by Limnohabitans Planktonicus Promotes the Maintenance of Species Diversity in Bacterial Communities [J]. PLoS One, 2012, 7(12): e51576-1-e51576-8.
|
YANPIRAT P, NAKATSUJI Y, HIRAGA S, et al. Lanthanide-Dependent Methanol and Formaldehyde Oxidation inMethylobacterium Aquaticum Strain 22A [J]. Microorganisms, 2020, 8(6): 822-1-822-17.
|
TANI A, OGURA Y, HAYASHI T, et al. Complete Genome Sequence ofMethylobacterium Aquaticum Strain 22A, Isolated from Racomitrium Japonicum Moss [J]. Genome Announcements, 2015, 3(2): e00266-1-e00266-15.
|
KURTH J M, BRITO J A, REUTER J, et al. Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase [J]. Journal of Biological Chemistry, 2016, 291(48): 24804-24818. doi: 10.1074/jbc.M116.753863
|
PRANGE A, DE ARZBERGER I, ENGEMANN C, et al. In Situ Analysis of Sulfur in the Sulfur Globules of Phototrophic Sulfur Bacteria by X-Ray Absorption near Edge Spectroscopy [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1428(2-3): 446-454. doi: 10.1016/S0304-4165(99)00095-1
|
ZHENG Q, LIU Y, JEANTHON C, et al. Geographic Impact on Genomic Divergence as Revealed by Comparison of NineCitromicrobial Genomes [J]. Applied and Environmental Microbiology, 2016, 82(24): 7205-7216. doi: 10.1128/AEM.02495-16
|