GUO YY, WANG W P, ZHANG H, et al. Traffic Engineering in Hybrid Software Defined Network via Reinforcement Learning[J]. Journal of Network and Computer Applications, 2021, 189: 103116. doi: 10.1016/j.jnca.2021.103116
赵颖, 王权, 黄叶子, 等. 多视图合作的网络流量时序数据可视分析[J]. 软件学报, 2016, 27(5): 1188-1198.
ALAN H F, KAUR J. Can Android Applications be Identified Using only TCP/IP Headers of Their Launch Time Traffic?[C] //Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. New York, NY, USA: ACM, 2016: 61-66.
WANG Z J, DONG Y N, MAO S W, et al. Internet Multimedia Traffic Classification from QoS Perspective Using Semi-Supervised Dictionary Learning Models[J]. China Communications, 2017, 14(10): 202-218. doi: 10.1109/CC.2017.8107644
SHAFIQ M, YU X Z, BASHIR A K, et al. A Machine Learning Approach for Feature Selection Traffic Classification Using Security Analysis[J]. The Journal of Supercomputing, 2018, 74(10): 4867-4892. doi: 10.1007/s11227-018-2263-3
COULL S E, DYER K P. Traffic Analysis of Encrypted Messaging Services: Apple Imessage and Beyond[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(5): 5-11. doi: 10.1145/2677046.2677048
LEE K M, PARK K S, HWANG K S, et al. Deep Neural Network Model Construction with Interactive Code Reuse and Automatic Code Transformation[J]. Concurrency and Computation: Practice and Experience, 2020, 32(18): 1002.
LI D, LI W Z, WANG X L, et al. App Trajectory Recognition over Encrypted Internet Traffic Based on Deep Neural Network[J]. Computer Networks, 2020, 179: 107372. doi: 10.1016/j.comnet.2020.107372
GU C J, ZHANG S Y, XUE X Z. Encrypted Internet Traffic Classification Method Based on Host Behavior[J]. International Journal of Digital Content Technology and Its Applications, 2011, 5(3): 167-174. doi: 10.4156/jdcta.vol5.issue3.16
NAN Y H, YANG Z M, YANG M, et al. Identifying User-Input Privacy in Mobile Applications at a Large Scale[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(3): 647-661. doi: 10.1109/TIFS.2016.2631949
王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 合肥: 中国科学技术大学, 2018: 69-90.
XU Z X, CHEN X L, TANG W, et al. Meta Weight Learning via Model-Agnostic Meta-Learning[J]. Neurocomputing, 2021, 432: 124-132. doi: 10.1016/j.neucom.2020.08.034
CONTI M, MANCINI L V, SPOLAOR R, et al. Analyzing Android Encrypted Network Traffic to Identify User Actions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 114-125. doi: 10.1109/TIFS.2015.2478741
ESPINAL A, ESTRADA R, MONSALVE C. Traffic Model Using a Novel Sniffer that Ensures the User Data Privacy[J]. MATEC Web of Conferences, 2019, 292: 03002. doi: 10.1051/matecconf/201929203002
LIU X Q, ZHOU F Y, LIU J, et al. Meta-Learning Based Prototype-Relation Network for Few-Shot Classification[J]. Neurocomputing, 2020, 383(6): 224-234.
LANDRO N, GALLO I, GRASSA R L. Combining Optimization Methods Using an Adaptive Meta Optimizer[J]. Algorithms, 2021, 14(6): 186. doi: 10.3390/a14060186
MUNKHDALAI T, YU H. Meta Networks[J]. Proceedings of Machine Learning Research, 2017, 70: 2254-2257.
QIAN Q, JIN R, YI J F, et al. Efficient Distance Metric Learning by Adaptive Sampling and Mini-Batch Stochastic Gradient Descent (SGD)[J]. Machine Learning, 2015, 99(3): 353-372. doi: 10.1007/s10994-014-5456-x
LI H, YANG X, LI Y, et al. Evolutionary Extreme Learning Machine with Sparse Cost Matrix for Imbalanced Learning[J]. ISA Transactions, 2020, 100: 198-209. doi: 10.1016/j.isatra.2019.11.020
XU J C, DU Q F. Learning Transferable Features in Meta-Learning for Few-Shot Text Classification[J]. Pattern Recognition Letters, 2020, 135: 271-278. doi: 10.1016/j.patrec.2020.05.007
TAYLOR V F, SPOLAOR R, CONTI M, et al. Robust Smartphone App Identification via Encrypted Network Traffic Analysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(1): 63-78.