KOKA C V, CERNY R E, GARDNER R G, et al. A Putative Role for the Tomato Genes DUMPY and CURL-3 in Brassinosteroid Biosynthesis and Response[J]. Plant Physiology, 2000, 122(1): 85-98. doi: 10.1104/pp.122.1.85
CHOE S, FUJIOKA S, NOGUCHI T, et al. Overexpression of DWARF4 in the Brassinosteroid Biosynthetic Pathway Results in Increased Vegetative Growth and Seed Yield in Arabidopsis[J]. The Plant Journal, 2001, 26(6): 573-582. doi: 10.1046/j.1365-313x.2001.01055.x
BAO F, SHEN J J, BRADY S R, et al. Brassinosteroids Interact with Auxin to Promote Lateral Root Development in Arabidopsis[J]. Plant Physiology, 2004, 134(4): 1624-1631. doi: 10.1104/pp.103.036897
TANABE S, ASHIKARI M, FUJIOKA S, et al. A Novel Cytochrome P450 is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, Dwarf11, with Reduced Seed Length[J]. The Plant Cell, 2005, 17(3): 776-790. doi: 10.1105/tpc.104.024950
WUC Y, TRIEU A, RADHAKRISHNAN P, et al. Brassinosteroids Regulate Grain Filling in Rice[J]. The Plant Cell, 2008, 20(8): 2130-2145. doi: 10.1105/tpc.107.055087
JIANG W B, HUANG H Y, HU Y W, et al. Brassinosteroid Regulates Seed Size and Shape in Arabidopsis[J]. Plant Physiology, 2013, 162(4): 1965-1977. doi: 10.1104/pp.113.217703
CHOE S, TANAKA A, NOGUCHI T, et al. Lesions in the Sterol Delta Reductase Gene of Arabidopsis Cause Dwarfism Due to a Block in Brassinosteroid Biosynthesis[J]. The Plant Journal, 2000, 21(5): 431-443. doi: 10.1046/j.1365-313x.2000.00693.x
WANG M, XU X, ZHANG X, et al. Functional Analysis of GmCPDs and Investigation of Their Roles in Flowering[J]. PLoS One, 2015, 10(3): e0118476. doi: 10.1371/journal.pone.0118476
SUI P, SHI J, GAO X, et al. H3K36 Methylation is Involved in Promoting Rice Flowering[J]. Molecular Plant, 2013, 6(3): 975-977. doi: 10.1093/mp/sss152
DURST F, NELSON D R. Diversity and Evolution of Plant P450 and P450-Reductases[J]. Drug Metabolism and Drug Interactions, 1995, 12(3-4): 189-206.
TANAKA K, ASAMI T, YOSHIDA S, et al. Brassinosteroid Homeostasis in Arabidopsis is Ensured by Feedback Expressions of Multiple Genes Involved in Its Metabolism[J]. Plant Physiology, 2005, 138(2): 1117-1125. doi: 10.1104/pp.104.058040
CHOE S, DILKES B P, FUJIOKA S, et al. The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 that Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid Biosynthesis[J]. The Plant Cell, 1998, 10(2): 231-243.
ASAMI T, MIN Y K, NAGATA N, et al. Characterization of Brassinazole, a Triazole-Type Brassinosteroid Biosynthesis Inhibitor[J]. Plant Physiology, 2000, 123(1): 93-100. doi: 10.1104/pp.123.1.93
BANCOSÏ S, NOMURA T, SATO T, et al. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis[J]. Plant Physiology, 2002, 130(1): 504-513. doi: 10.1104/pp.005439
LIU T S, ZHANG J P, WANG M Y, et al. Expression and Functional Analysis of ZmDWF4, an Ortholog of Arabidopsis DWF4 from Maize (Zea Mays L. )[J]. Plant Cell Reports, 2007, 26(12): 2091-2099. doi: 10.1007/s00299-007-0418-4
CHOE S, NOGUCHI T, FUJIOKA S, et al. The Arabidopsis Dwf7/Ste1 Mutant is Defective in the Delta7 Sterol C-5 Desaturation Step Leading to Brassinosteroid Biosynthesis[J]. The Plant Cell, 1999, 11(2): 207-221.
ASAMI T, YOSHIDA S. Brassinosteroid Biosynthesis Inhibitors[J]. Trends in Plant Science, 1999, 4(9): 348-353. doi: 10.1016/S1360-1385(99)01456-9
KIMG T, TSUKAYA H, SAITO Y, et al. Changes in the Shapes of Leaves and Flowers Upon Overexpression of Cytochrome P450 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 9433-9437. doi: 10.1073/pnas.96.16.9433
OHNISHI T, SZATMARI A M, WATANABE B, et al. C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis[J]. The Plant Cell, 2006, 18(11): 3275-3288. doi: 10.1105/tpc.106.045443
OHNISHI T, GODZA B, WATANABE B, et al. CYP90A1/CPD, a Brassinosteroid Biosynthetic Cytochrome P450 of Arabidopsis, Catalyzes C-3 Oxidation[J]. Journal of Biological Chemistry, 2012, 287(37): 31551-31560. doi: 10.1074/jbc.M112.392720
KIM T W, HWANG J Y, KIM Y S, et al. Arabidopsis CYP85A2, a Cytochrome P450, Mediates the Baeyer-Villiger Oxidation of Castasterone to Brassinolide in Brassinosteroid Biosynthesis[J]. The Plant Cell, 2005, 17(8): 2397-2412. doi: 10.1105/tpc.105.033738
田荣, 杨勇, 王晓峰. 植物受体激酶BAK1研究进展[J]. 西北植物学报, 2014, 34(3): 636-644.
NEFF M M, NGUYEN S M, MALANCHARUVIL E J, et al. BAS1: a Gene Regulating Brassinosteroid Levels and Light Responsiveness in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26): 15316-15323. doi: 10.1073/pnas.96.26.15316
YIN Y H, WANG Z Y, MORA-GARCIA S, et al. BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation[J]. Cell, 2002, 109(2): 181-191. doi: 10.1016/S0092-8674(02)00721-3
YAN Z Y, ZHAO J, PENG P, et al. BIN2 Functions Redundantly with other Arabidopsis GSK3-Like Kinases to Regulate Brassinosteroid Signaling[J]. Plant Physiology, 2009, 150(2): 710-721. doi: 10.1104/pp.109.138099
TANG W Q, KIM T W, OSES-PRIETO J A, et al. BSKS Mediate Signal Transduction from the Receptor Kinase BRI1 in Arabidopsis[J]. Science, 2008, 321(5888): 557-560. doi: 10.1126/science.1156973
陈蒙, 刘海峰. 山葡萄C4H基因的克隆表达及遗传转化分析[J]. 西南大学学报(自然科学版), 2019, 41(10): 11-21.