李昆, 赵理, 赵博阳, 等. 基于频繁项统计的流—安时积分SOC估计方法[J]. 重庆理工大学学报(自然科学), 2021, 35(11): 1-7.
MAKEEN P, GHALI H, MEMON S. Controllable Electric Vehicle Fast Charging Approach Based on Multi-Stage Charging Current Methodology[C] //2020 IEEE International Conference on Power and Energy (PECon). December 7-8, 2020, Penang, Malaysia. IEEE, 2020: 398-403.
周旋, 周萍, 郑岳久, 等. 锂离子电池宽温度区间无析锂快充策略[J]. 汽车安全与节能学报, 2020, 11(3): 397-405. doi: 10.3969/j.issn.1674-8484.2020.03.016
莫兴丹, 刘伟, 谢健, 等. 碱锰电池的小电流恒阻放电特性[J]. 重庆理工大学学报(自然科学), 2020, 34(5): 220-225.
殷娟娟, 王伟贤, 袁小溪, 等. 退役锂电池快速评价及分选方法研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 15-23.
黄泽好, 金龙娥, 邹艾宏, 等. 乘用车关门声声品质GA-SVR预测研究[J]. 西南大学学报(自然科学版), 2021, 43(6): 187-194.
马天翼, 苏素, 张宗, 等. 计算机断层扫描技术在锂离子电池检测中的应用研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 133-139.
ZOU C F, HU X S, WEI Z B, et al. Electrochemical Estimation and Control for Lithium-Ion Battery Health-Aware Fast Charging[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6635-6645. doi: 10.1109/TIE.2017.2772154
CHU Z Y, FENG X N, LU L G, et al. Non-Destructive Fast Charging Algorithm of Lithium-Ion Batteries Based on the Control-Oriented Electrochemical Model[J]. Applied Energy, 2017, 204: 1240-1250. doi: 10.1016/j.apenergy.2017.03.111
金智林, 李静轩, 李宇柔. 基于电控液压制动的汽车稳定性多目标协同控制[J]. 重庆理工大学学报(自然科学), 2020, 34(3): 10-15.
魏永琪, 赵玉兰, 贠海涛. 基于内阻估计燃料电池热功率的建模与分析[J]. 重庆理工大学学报(自然科学), 2020, 34(11): 117-123.
葛帅帅, 杨雨番, 郭栋, 等. 电动汽车电驱动系统机电耦合动态特性研究[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 50-57.
DESHPANDE R, CHENG Y T, VERBRUGGE M W. Modeling Diffusion-Induced Stress in Nanowire Electrode Structures[J]. Journal of Power Sources, 2010, 195(15): 5081-5088. doi: 10.1016/j.jpowsour.2010.02.021
VETTER J, NOVAK P, WAGNER M R, et al. Ageing Mechanisms in Lithium-Ion Batteries[J]. Journal of Power Sources, 2005, 147(1-2): 269-281. doi: 10.1016/j.jpowsour.2005.01.006
龚敏明, 卞景季, 孙丙香, 等. 锂离子电池分数阶等效电路模型低频参数演变规律研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 6-14.
周思宇, 杨建伟, 顾博, 等. 基于城市特征差异性的充电设施规划[J]. 西南大学学报(自然科学版), 2019, 41(10): 133-141.
LIU S Y, SU J M, ZHAO J Y, et al. Unraveling the Capacity Fading Mechanisms of LiNi0.6Mn0.2Co0.2O2 at Elevated Temperatures[J]. Journal of Power Sources, 2018, 393: 92-98. doi: 10.1016/j.jpowsour.2018.05.029
刘晋霞, 李庆烨, 刘宗锋. 协同线圈对电动汽车动态无线充电系统的影响分析[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 57-63.
LI J, DOWNIE L E, MA L, et al. Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): 1401-1408. doi: 10.1149/2.1011507jes
SPINGLER F B, WITTMANN W, STURM J, et al. Optimum Fast Charging of Lithium-Ion Pouch Cells Based on Local Volume Expansion Criteria[J]. Journal of Power Sources, 2018, 393: 152-160. doi: 10.1016/j.jpowsour.2018.04.095
MUKHOPADHYAY A, SHELDON B W. Deformation and Stress in Electrode Materials for Li-Ion Batteries[J]. Progress in Materials Science, 2014, 63: 58-116. doi: 10.1016/j.pmatsci.2014.02.001
LU B, SONG Y C, ZHANG J Q. Selection of Charge Methods for Lithium-Ion Batteries by Considering Diffusion Induced Stress and Charge time[J]. Journal of Power Sources, 2016, 320: 104-110. doi: 10.1016/j.jpowsour.2016.04.079
YANG L J, CHENG X Q, MA Y L, et al. Changing of SEI Film and Electrochemical Properties About MCMB Electrodes During Long-Term Charge/Discharge Cycles[J]. Journal of the Electrochemical Society, 2013, 160(11): A2093-A2099. doi: 10.1149/2.064311jes
刘西, 张隆, 胡远志. 缩微智能车巡航控制系统开发方法研究[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 18-26.
YANG X G, LENG Y J, ZHANG G S, et al. Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging[J]. Journal of Power Sources, 2017, 360: 28-40. doi: 10.1016/j.jpowsour.2017.05.110
AGUBRA V, FERGUS J. Lithium-Ion Battery Anode Aging Mechanisms[J]. Materials, 2013, 6(4): 1310-1325. doi: 10.3390/ma6041310
SU L, ZHANG J, WANG C, et al. Identifying Main Factors of Capacity Fading in Lithium-Ion Cells Using Orthogonal Design of Experience[J]. Applied Energy, 2016, 163: 201-210. doi: 10.1016/j.apenergy.2015.11.014
何洪文, 石曼, 曹剑飞, 等. 基于动态规划的再生制动能量管理策略[J]. 重庆理工大学学报(自然科学), 2021, 35(2): 74-80.
ZHANG Q, WHITE R E. Capacity Fade Analysis of a Lithium-Ion Cell[J]. Journal of Power Sources, 2008, 179(2): 793-798. doi: 10.1016/j.jpowsour.2008.01.028
WANG J, LIU P, HICKS-GARNER J, et al. Cycle-Life Model for Graphite-LiFePO4 Cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948. doi: 10.1016/j.jpowsour.2010.11.134
JALKANEN K, KARPPINEN J, SKOGSTROM L, et al. Cycle Aging of Commerical NMC/Graphite Pouch Cells at Dfferent Temperatures[J]. Applied Energy, 2015, 154(15): 160-172.
CHANG Y, LI H, WU L, et al. Irreverible Capacity of Graphite Electrode in Lithium-ion Batteries[J]. Journal of Power Sources, 1997, 68(2): 187-190. doi: 10.1016/S0378-7753(96)02549-9
贺灵明. 基于电化学—热—副反应耦合模型的锂离子电池老化研究[D]. 长沙: 湖南大学, 2019.
RAMADASS P, BALA H, RALPH W, et al. Mathematical Modeling of the Capacity Fade of Li-Ion Cells[J]. Journal of Power Sources, 2003, 123(2): 230-240. doi: 10.1016/S0378-7753(03)00531-7
SCHMIDT A P, BITZER M, IMRE Á W, et al. Model-Based Distinction and Quantification of Capacity Loss and Rate Capability Fade in Li-Ion Batteries[J]. Journal of Power Sources, 2010, 195(22): 7634-7638. doi: 10.1016/j.jpowsour.2010.06.011
BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A Review on Lithium-Ion Battery Aeging Mechanisms and Estimations for Automotive Applications[J]. Journal of Power Sources, 2013, 241: 680-689. doi: 10.1016/j.jpowsour.2013.05.040
NING G, WHITE R E, POPOV B N. A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries[J]. Electrochimica Acta, 2006, 51(10): 2012-2022. doi: 10.1016/j.electacta.2005.06.033
DAI H F, WEI X Z, SUN Z C. A New SOH Prediction Concept for the Power Lithium-Ion Battery Used on HEVs[C] //2009 IEEE Vehicle Power and Propulsion Conference. September 7-10, 2009. Dearborn, MI. IEEE, 2009: 1649-1653.
YOU G W, PARK S, OH D. Real-Time State-of-Health Estimation for Electric Vehicle Batteries: A Data-Driven Approach[J]. Applied Energy, 2016, 176: 92-103. doi: 10.1016/j.apenergy.2016.05.051
PETZL M, KASPER M, DANZER M A. Lithium Plating in a Commercial Lithium-Ion Battery-A Low-Temperature Aging Study[J]. Journal of Power Sources, 2015, 275: 799-807. doi: 10.1016/j.jpowsour.2014.11.065
何志刚, 魏涛, 盘朝奉, 等. 一种基于粒子滤波和多项式回归的锂离子电池剩余寿命间接预测方法[J]. 重庆理工大学学报(自然科学), 2020, 34(11): 27-33.
苏来锁. 多应力作用下能量型锂离子电池的老化行为研究[D]. 北京: 清华大学, 2016.
李旭玲, 刘梦, 姜久春, 等. 计及循环寿命的锂离子电池优化使用研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 40-46.
ZHANG D, HARAN B S, DURAIRAJAN A, et al. Studies on Capacity Fade of Lithium-Ion Batteries[J]. Journal of Power Sources, 2000, 91(2): 122-129. doi: 10.1016/S0378-7753(00)00469-9
KIDA Y, KINOSHITA A, YANAGIDA K, et al. Study on Capacity Fade Factors of Lithium Secondary Batteries Using LiNi0.7Co0.3O2 and Graphite-Coke Hybrid Carbon[J]. Electrochimica Acta, 2002, 47(26): 4157-4162. doi: 10.1016/S0013-4686(02)00371-7
SOMERVILLE L, BARENO J, TRASK S, et al. The Effect of Charging Rates on the Graphite Electrode of Commercial Lithium-Ion Cells: a Post-Mortem Study[J]. Journal of Power Sources, 2016, 335: 189-196. doi: 10.1016/j.jpowsour.2016.10.002
YANG X, WANG C Y. Understanding the Trilemma of Fast Charging, Energy Density and Cycle Life of Lithium-Ion Batteries[J]. Journal of Power Sources, 2018, 402: 489-498. doi: 10.1016/j.jpowsour.2018.09.069
SCHUSTER S F, BACH T, FLEDER E, et al. Nonlinear Aging Characteristics of Lithium-ion Cells Under Different Operational Conditions[J]. Journal of Energy Storage, 2015, 1: 44-53. doi: 10.1016/j.est.2015.05.003
胡慧敏. 车用锂离子电池健康状态估计及剩余寿命预测[D]. 西安: 长安大学, 2020.
GIREAUD L, GRUGEON S, LARUELLE S, et al. Lithium Metal Stripping/Plating Mechanisms Studies: A Metallurgical Approach[J]. Electrochemistry Communications, 2006, 8(10): 1639-1649. doi: 10.1016/j.elecom.2006.07.037
HONBO H, TAKEI K, ISHⅡ Y, et al. Electrochemical Properties and Lideposition Morphologies of Surface Modified Graphite After Grinding[J]. Journal of Power Sources, 2009, 189(1): 337-343. doi: 10.1016/j.jpowsour.2008.08.048
PURUSHOTHAMAN B K, LANDAU U. Rapid Charging of Lithium-Ion Batteries Using Pulsed Currents-A Theoretical Ananlysis[J]. Journal of the Electrochemical Society, 2006, 153(3): A533-A542. doi: 10.1149/1.2161580
ARORA P, DOYLE M, WHITE R E. Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Suing Carbon-Based Negative Electrodes[J]. Journal of the Electrochemical Society, 1999, 146(10): 3543-3553. doi: 10.1149/1.1392512
CANNARELLA J, ARNOLD C B. The Effects of Defects on Localized Plating in Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1365-A1373. doi: 10.1149/2.1051507jes
HAELOW J E, GLAZIER S L, LI J, et al. Use of Asymmetric Average Charge-and Average Discharge-Voltages as an Indicator of the Onset of Unwanted Lithium Deposition in Lithium-Ion Cells[J]. Journal of the Electrochemical Society, 2018, 165(16): A3595-A3601. doi: 10.1149/2.0011816jes
邹梦杰. 动力锂离子电池充放电特性与热行为研究[D]. 重庆: 重庆大学, 2018.
邓涛, 邓彪, 宋刚. 基于SPC5634的纯电动汽车整车控制器软件开发与实验[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 32-39.
陈莹. 电动车用锂离子电池快速充电技术研究[D]. 无锡: 江南大学, 2018.
刘艳莉, 戴胜, 程泽, 等. 基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J]. 电工技术学报, 2014, 29(1): 221-228. doi: 10.3969/j.issn.1000-6753.2014.01.031
李家曦, 孙友长, 庞玉涵, 等. 基于并行深度强化学习的混合动力汽车能量管理策略优化[J]. 重庆理工大学学报(自然科学), 2020, 34(9): 62-72.
KIM J H, LEE S J, KIM S K, et al. Modeling of Battery for EV using EMTP/ATPD Raw[J]. Journal of Electrical Engineering and Technology, 2014, 9(1): 98-105. doi: 10.5370/JEET.2014.9.1.098
NYMAN A, ZAVALIS T G, ELGER R, et al. Analysis of Polarization in a li-ion Battery Cell by Numerical Simulations[J]. Journal of the Electrochemical Society, 2010, 157(11): A1236-A1246. doi: 10.1149/1.3486161
姚雷, 王震坡. 锂离子电池极化电压特性分析[J]. 北京理工大学学报, 2014, 34(9): 912-916, 922.
JIANG J C, LIU Q, ZHANG C P, et al. Evaluation of Acceptable Charging Current of Power li-ion Batteries Based on Polarization Characteristics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6844-6851. doi: 10.1109/TIE.2014.2320219
张志强, 丁磊, 陈尉平. 串并联插电混合动力汽车试验研究[J]. 重庆理工大学学报(自然科学), 2020, 34(11): 63-68.
舒星. 电动汽车锂离子电池充电特性及控制策略研究[D]. 昆明: 昆明理工大学, 2018.
DOUGHTY D H, ROTH E P, CRAFTS C C, et al. Effects of Additives on Thermal Stability of Li-ion Cells[J]. Journal of power sources, 2005, 146(1-2): 116-120. doi: 10.1016/j.jpowsour.2005.03.170
QIAN K, ZHOU C, YUAN Y, et al. Temperature Effect on Electric Vehicle Battery Cycle Life in Vehicle-to-Grid Application[C]. China International Conference on Electricity Distribution. IEEE, 2011.
DUBARRY M, LIAW B Y, CHEN M S, et al. Identifying Battery Aging Mechanisms in Large Format Li-ion Cells[J]. Journal of power sources, 2011, 196(7): 3420-3425. doi: 10.1016/j.jpowsour.2010.07.029
厉青峰. 三元锂离子电池电化学—热耦合多尺度建模与热性能分析研究[D]. 济南: 山东大学, 2020.
LANRONG D, CHIEHEN C, HSIANGFU Y. A Robust, Intelligent CC-CV Fast Charger for Aging Lithium-Ion Btteries[C]. IEEE International Symposium on Industrial Electronics. IEEE, 2016.
FU R J, CHOE S Y, AGUBRA V, et al. Development of a Physics-Based Degradation Model for Lithium-Ion Polymer Batteries Considering Side Reactions[J]. Journal of Power Sources, 2015, 278: 506-521. doi: 10.1016/j.jpowsour.2014.12.059
MEI W X, ZHANG L, SUN J H, et al. Experimental and Numerical Methods to Investigate the Overcharge Caused Lithium Plating for Lithium-Ion Battery[J]. Energy Storage Materials, 2020, 32: 91-104. doi: 10.1016/j.ensm.2020.06.021
CHEN S C, WAN C C, WANG Y Y. Thermal Analysis of Lithium-Ion Batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124. doi: 10.1016/j.jpowsour.2004.05.064
刘磊, 王芳, 樊彬, 等. 热特性方法在动力电池快充性能研究中的应用[J]. 电源技术, 2018, 42(3): 365-366, 372. doi: 10.3969/j.issn.1002-087X.2018.03.014
ROMAIN M, OLIVIER B, PHILIPPE G, et al. Electro-Thermal Behavior of Four Fast Vharging Protocols for a Lithium-Ion Cell at Different Temperatures[C]. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018.
云凤玲, 卢世刚. 基于高镍三元材料锂离子动力电池在循环前后的热特性分析[J]. 稀有金属, 2018, 42(2): 182-190.
ZENG G H, BAI Z H, HUANG P F, et al. Thermal Safety Study of Li-ion Batteries Under Limited Overcharge Abuse Based on Coupled Electrochemical-Thermal Model[J]. International Journal of Energy Research, 2020, 44(5): 3607-3625. doi: 10.1002/er.5125
齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055.
ZHENG G, ZHANG W C, HUANG X D. Lithium-Ion Battery Electrochemical-Thermal Model Using Various Materials as Cathode Material: A Simulation Study[J]. Chemistry Select, 2018, 3: 11573-11578.
王枫. 锂离子动力电池分段智能充电策略研究[D]. 济南: 山东大学, 2017.
劳力. 高比能锂离子动力电池系统充电策略及热失控安全研究[D]. 合肥: 中国科学技术大学, 2020.
DURU K K, KARRA C, VENKATACHALAM P, et al. Critical Insights Into Fast Charging Techniques for Lithium-Ion Batteries in Electric Vehicles[J]. IEEE Transactions on Device and Material Reliability, 2021, 21(1): 137-152. doi: 10.1109/TDMR.2021.3051840
方浩然. 动力锂离子电池分段优化充电方法与应用研究[D]. 济南: 山东大学, 2019.
王越洋. 基于模糊控制的锂离子电池恒定极化充电方法研究[D]. 武汉: 湖北工业大学, 2018.
NOTTEN P H L, VELD J H G O H, BEEK J R G V. Boostcahrging li-ion Batteries: A Challenging New Charging Concept[J]. Journal of Power Sources, 2005, 145(1): 89-94. doi: 10.1016/j.jpowsour.2004.12.038
罗江鹏, 张玮, 王国林, 等. 基于出行链数据的电动汽车充电需求预测模型[J]. 重庆理工大学学报(自然科学), 2020, 34(6): 1-8.
LIU K L, LI K, YANG Z L, et al. An Advanced Lithium-Ion Battery Optimal Charging Strategy Based on a Coupled Thermoelectric Model[J]. Electrochimica Acta, 2017, 225: 330-344. doi: 10.1016/j.electacta.2016.12.129
LIU Y H, HSIEH C H, LUO Y F. Search for an Optimal Five-Step Charging Pattern for Li-ion Batteries Using Consecutive Orthogonal Arrays[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 654-661. doi: 10.1109/TEC.2010.2103077
LI J, MURPHY E, WINNICK J, et al. The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries[J]. Journal of Power Sources, 2001, 102(1-2): 302-309. doi: 10.1016/S0378-7753(01)00820-5
CHEN L R. Design of Duty-Varied Voltage Pulse Charger for Improving Li-ion Battery Charging Response[J]. IEEE Transactions on Industrial Eletronics, 2009, 56(2): 480-487. doi: 10.1109/TIE.2008.2002725
YIN M D, YOUN J, PARK D, et al. Efficient Frequency and Duty Cycle Control Method for Fast Pulse-Charging of Distributed Battery Packs by Sharing Cell Status[C] //2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). August 10-14, 2015, Beijing, China. IEEE, 2015: 1813-1818.
PURUSHOTHAMAN B K, LANDU U. Rapid Charging of Lithium-Ion Batteries Using Pulsed Currents[J]. Journal of The Electrochemical Society, 2006, 153(3): A533-A542. doi: 10.1149/1.2161580
WANG S C, CHEN Y L, LIU Y H, et al. A Fast-Charging Pattern Search for Li-ion Batteries with Fuzzy-Logic-Based Taguchi Method[C] //2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). June 15-17, 2015, Auckland, New Zealand. IEEE, 2015: 855-859.
QIAN L, JUN W, RUI X, et al. Towards a Smarter Battery Management System: A Critical Review on Optimal Charging Methods of Lithium-Ion Batteries[J]. Energy, 2019, 183: 220-234. doi: 10.1016/j.energy.2019.06.128
IKEY T, SAWADA N, MURAKAMI J A. Multi-Step Constant-Current Charging Method for Elcetric Vehicle Nickel/Metal Hydride Battery with High-Energy Efficiency and Long Cycle Life[J]. Journal of Power Sources, 2002, 105(1): 6-12. doi: 10.1016/S0378-7753(01)00907-7
LUO Y F, LIU Y H, WANG S C. Search for an Optimal Multistage Charging Pattern for Lithium-Ion Batteries Using the Taguchi Approach[J]. IEEE Transactions on Industrial Electronics, 2009.
SAVOYE F, VENET P, MILLET M, et al. Impact of Periodic Current Pulses on Li-ion Battery Performance[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3481-3488. doi: 10.1109/TIE.2011.2172172
ZHANG C P, JIANG J C, GAO Y, et al. Charging Optimization in Lithium-Ion Batteries Based on Temperature Rise and Charge time[J]. Applied Energy, 2017, 194: 569-577. doi: 10.1016/j.apenergy.2016.10.059
WU X, LIU L, SHEN L, et al. Fast Flexible Charging Strategy for Electric Vehicles Based on Lithium Iron Phosphate Battery Characteristics[C] //2018 China International Conference on Electricity Distribution (CICED). September 17-19, 2018, Tianjin, China. IEEE, 2018: 2828-2832.
CONLEMAN M, HURLEY W G. An Improved Battery Characterization Method Using a Two-Pulse Load Test. IEEE Trans[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 708-713. doi: 10.1109/TEC.2007.914329
史永胜, 张耀忠, 洪元涛, 等. 基于电—热—老化耦合模型的锂离子电池优化充电策略[J]. 电子器件, 2020, 43(5): 1078-1084. doi: 10.3969/j.issn.1005-9490.2020.05.023
HUANG S J, HUANG B G, PAI F S. Fast Charge Strategy Based on the Characterization and Evaluation of LiFePO4 Batteries[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1555-1562. doi: 10.1109/TPEL.2012.2209184
JIUCHUN J, CAIPING Z, JIAPENG W, et al. An Optimal Charging Method for li-ion Batteries Using a Fuzzy Control Approach Based on Polarization Properties[J]. IEEE Transactions on Vehicular Techonology, 2013, 62(7): 3000-3009. doi: 10.1109/TVT.2013.2252214
褚政宇. 基于降维电化学模型的锂离子动力电池无析锂快充控制[D]. 北京: 清华大学, 2019.
TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-Ion Battery Fast Charging: A Review[J]. eTransportation, 2019, 1: 100011. doi: 10.1016/j.etran.2019.100011