KANG D S, PENG S J. Existence of Solutions for Elliptic Problems with Critical Sobolev-Hardy Exponents [J]. Israel Journal of Mathematics, 2004, 143(1): 281-297. doi: 10.1007/BF02803503
|
刘海燕, 廖家锋, 唐春雷. 带Hardy-Sobolev临界指数的半线性椭圆方程正解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 60-65.
|
苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36.
|
KANG D S, PENG S J. Solutions for Semilinear Elliptic Problems with Critical Sobolev-Hardy Exponents and Hardy Potential [J]. Applied Mathematics Letters, 2005, 18(10): 1094-1100. doi: 10.1016/j.aml.2004.09.016
|
HE X M, ZOU W M. Infinitely Many Arbitrarily Small Solutions for Singular Elliptic Problems with Critical Sobolev-Hardy Exponents [J]. Proceedings of the Edinburgh Mathematical Society, 2009, 52(1): 97-108. doi: 10.1017/S0013091506001568
|
HE X M, ZOU W M. Infinitely Many Solutions for a Singular Elliptic Equation Involving Critical Sobolev-Hardy Exponents in $\mathbb{R}^N $ [J]. Acta Mathematica Scientia, 2010, 30(3): 830-840. doi: 10.1016/S0252-9602(10)60082-3
|
余芳, 陈文晶. 带有临界指数增长的分数阶问题解的存在性[J]. 西南大学学报(自然科学版), 2020, 42(10): 116-123.
|
SHANG X D, ZHANG J H, YIN R. Existence of Positive Solutions to Fractional Elliptic Problems with Hardy Potential and Critical Growth [J]. Mathematical Methods in the Applied Sciences, 2019, 42(1): 115-136. doi: 10.1002/mma.5327
|
ZHANG J G, HSU T S. Multiple Solutions for a Fractional Laplacian System Involving Critical Sobolev-Hardy Exponents and Homogeneous Term [J]. Mathematical Modelling and Analysis, 2020, 25(1): 1-20. doi: 10.3846/mma.2020.7704
|
ZHANG K Y, O'REGAN D, XU J F, et al. Infinitely Many Solutions Via Critical Points for a Fractional p-Laplacian Equation with Perturbations [J]. Advance in Difference Equations, 2019, 2019(1): 166. doi: 10.1186/s13662-019-2113-5
|
商彦英, 唐春雷. 一类奇异椭圆方程无穷多解的存在性[J]. 东北师大学报(自然科学版), 2007, 39(4): 10-16.
|
DI NEZZA E, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces [J]. Bulletin Des Sciences Mathematigues, 2012, 136(5): 521-573. doi: 10.1016/j.bulsci.2011.12.004
|
YANG J F. Fractional Sobolev-Hardy Inequality in $\mathbb{R}^N $ [J]. Nonlinear Analysis, 2015, 119: 179-185. doi: 10.1016/j.na.2014.09.009
|
CHOU K S, CHU C W. On the Best Constant for a Weighted Sobolev-Hardy Inequality [J]. Journal of the London Mathematical Society, 1993, S2-48(1): 137-151.
|
WILLEM M. Minimax Theorems [M]. Boston, M A: Birkhauser, 1996.
|