WU J H, WEI G S. Coexistence States for Cooperative Model with Diffusion[J]. Computers & Mathematics With Applications, 2002, 43(10-11): 1277-1290.
姚晓洁, 秦发金. 一类具有脉冲和收获率的Lotla-Volterra合作系统的4个正概周期解[J]. 西南师范大学学报(自然科学版), 2016, 41(11): 7-14.
ALBRECHT F, GATZKE H, HADDAD A, et al. The Dynamics of Two Interacting Populations[J]. Journal of Mathematical Analysis and Applications, 1974, 46(3): 658-670. doi: 10.1016/0022-247X(74)90267-4
PAO C V. Strongly Coupled Elliptic Systems and Applications to Lotka-Volterra Models with Cross-Diffusion[J]. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60(7): 1197-1217.
ZHOU H, LIN Z G. Coexistence in a Strongly Coupled System Describing a Two-Species Cooperative Model[J]. Applied Mathematics Letters, 2007, 20(11): 1126-1130. doi: 10.1016/j.aml.2006.11.012
ADAM B, LIN Z G, TARBOUSH A K. Coexistence in a Mutualistic Model with Cross-Diffusion in a Heterogeneous Environment[J]. International Journal of Biomathematics, 2018, 11(6): 1850078. doi: 10.1142/S179352451850078X
LI M, LIN Z G. The Spreading Fronts in a Mutualistic Model with Advection[J]. Discrete & Continuous Dynamical Systems-B, 2015, 20(7): 2089-2105.
ZHANG Q Y, WANG M X. Dynamics for the Diffusive Mutualist Model with Advection and Different Free Boundaries[J]. Journal of Mathematical Analysis and Applications, 2019, 474(2): 1512-1535. doi: 10.1016/j.jmaa.2019.02.037
LOU Y, ZHOU P. Evolution of Dispersal in Advective Homogeneous Environment: The Effect of Boundary Conditions[J]. Journal of Differential Equations, 2015, 259(1): 141-171. doi: 10.1016/j.jde.2015.02.004
LOU Y, NIE H, WANG Y E. Coexistence and Bistability of a Competition Model in Open Advective Environments[J]. Mathematical Biosciences, 2018, 306: 10-19. doi: 10.1016/j.mbs.2018.09.013
NIE H, WANG B, WU J H. Invasion Analysis on a Predator-Prey System in Open Advective Environments[J]. Journal of Mathematical Biology, 2020, 81(6-7): 1429-1463. doi: 10.1007/s00285-020-01545-3
VASILYEVA O. Population Dynamics in River Networks: Analysis of Steady States[J]. Journal of Mathematical Biology, 2019, 79(1): 63-100. doi: 10.1007/s00285-019-01350-7
KREIN M G, RUTMAN M A. Linear Operators Leaving Invariant a Cone in a Banach Space[J]. Uspekhi Matematicheskikh Nauk, 1948, 3(1): 3-95.
PAO C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992.
SMITH H L, ZHAO X Q. Robust Persistence for Semidynamical Systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47(9): 6169-6179.
ARSCOTT F M. Periodic-Parabolic Boundary Value Problems and Positivity[J]. Bulletin of the London Mathematical Society, 1992, 24(6): 619-620. doi: 10.1112/blms/24.6.619
MAGAL P, ZHAO X Q. Global Attractors and Steady States for Uniformly Persistent Dynamical Systems[J]. SIAM Journal on Mathematical Analysis, 2005, 37(1): 251-275. doi: 10.1137/S0036141003439173