杜佳璐, 吕颖. 一类分数阶Kirchhoff方程的半经典解[J]. 西南师范大学学报(自然科学版), 2021, 46(2): 30-36.
苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36.
CHEN W J. Existence of Solutions for Fractional p-Kirchhoff Type Equations with a Generalized Choquard Nonlinearity[J]. Journal of Mathematical Physics, 2018, 59(12): 1-14.
CHEN C S, HUANG J C, LIU L H. Multiple Solutions to the Nonhomogeneous p-Kirchhoff Elliptic Equation with Concave-Convex Nonlinearities[J]. Applied Mathematics Letters, 2013, 26(7): 754-759. doi: 10.1016/j.aml.2013.02.011
NAIMEN D. Positive Solutions of Kirchhoff Type Elliptic Equations Involving a Critical Sobolev Exponent[J]. Nonlinear Differential Equations and Applications Nodea, 2014, 21(6): 885-914. doi: 10.1007/s00030-014-0271-4
OURRAOUI A. On a p-Kirchhoff Problem Involving a Critical Nonlinearity[J]. Comptes Rendus-Mathématique, 2014, 352(4): 295-298. doi: 10.1016/j.crma.2014.01.015
ZHOU C X, SONG Y Q. Multiplicity of Solutions for Elliptic Problems of p-Kirchhoff Type with Critical Exponent[J]. Boundary Value Problems, 2015, 2015(1): 1-12. doi: 10.1186/s13661-014-0259-3
CHU C M, SUN J J. Multiplicity of Positive Solutions for a Class of p-Kirchhoff Equation with Critical Exponent[J]. Annals of Functional Analysis, 2020, 11(4): 1126-1140. doi: 10.1007/s43034-020-00077-7
LI Q, YANG Z D. Existence of Multiple Solutions for a p-Kirchhoff Problem with the Non-Linear Boundary Condition[J]. Applicable Analysis, 2018, 97(16): 2843-2851. doi: 10.1080/00036811.2017.1395859
ABREU E A M, MEDEIROS J M. Multiplicity of Positive Solutions for a Class of Quasilinear Nonhomogeneous Neumann Problems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2005, 60(8): 1443-1471. doi: 10.1016/j.na.2004.09.058
DENG Y B, JIN L Y. Multiple Positive Solutions for a Quasilinear Nonhomogeneous Neumann Problems with Critical Hardy Exponents[J]. Nonlinear Analysis: Theory, Methods and Applications, 2007, 67(12): 3261-3275. doi: 10.1016/j.na.2006.07.051
SABINA DE LIS J C. A Concave-Convex Quasilinear Elliptic Problem Subject to a Nonlinear Boundary Condition[J]. Differential Equations and Applications, 2011, 3(4): 469-486.
XIU Z H, CHEN C S. Existence of Multiple Solutions for Singular Elliptic Problems with Nonlinear Boundary Conditions[J]. Journal of Mathematical Analysis and Applications, 2014, 410(2): 625-641. doi: 10.1016/j.jmaa.2013.08.048
MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian System[M]. Berlin: Springer-Verlag, 1989.