陆金甫, 关治. 偏微分方程数值解法[M]. 2版. 北京: 清华大学出版社, 2004.
戴嘉尊, 邱建贤. 微分方程数值解法[M]. 南京: 东南大学出版社, 2002.
ZHU L Y, JU L L, ZHAO W D. Fast High-Order Compact Exponential Time Differencing Runge-Kutta Methods for Second-Order Semilinear Parabolic Equations[J]. Journal of Scientific Computing, 2016, 67(3): 1043-1065. doi: 10.1007/s10915-015-0117-1
JAKUBЁLIENЁ K, ĈIUPAILA R, SAPAGOVAS M. Semi-Implicit Difference Scheme for a Two-Dimensional Parabolic Equation with an Integral Boundary Condition[J]. Mathematical Modelling and Analysis, 2017, 22(5): 617-633. doi: 10.3846/13926292.2017.1342709
ZHAO X P, LIU F N, LIU B. Finite Difference Discretization of a Fourth-Order Parabolic Equation Describing Crystal Surface Growth[J]. Applicable Analysis, 2015, 94(9): 1964-1975. doi: 10.1080/00036811.2014.959440
LIAO H L, SUN Z Z. Maximum Norm Error Bounds of ADI and Compact ADI Methods for Solving Parabolic Equations[J]. Numerical Methods for Partial Differential Equations, 2010, 26(1): 37-60. doi: 10.1002/num.20414
SAJAVIĈIUS S. Stability of the Weighted Splitting Finite-Difference Scheme for a Two-Dimensional Parabolic Equation with Two Nonlocal Integral Conditions[J]. Computers & Mathematics With Applications, 2012, 64(11): 3485-3499.
SAPAGOVAS M, JAKUBЁLIENЁ K. Alternating Direction Method for Two-Dimensional Parabolic Equation with Nonlocal Integral Condition[J]. Nonlinear Analysis: Modelling and Control, 2012, 17(1): 91-98. doi: 10.15388/NA.17.1.14080
MA M S, MA J Y, GU S M. A High-Order Accuracy Explicit Difference Scheme with Branching Stability for Solving Higher-Dimensional Heat-Conduction Equation[J]. Chinese Quarterly Journal of Mathematics, 2008, 23(3): 446-452.
詹涌强. 二维抛物型方程的一族高精度分支稳定显格式[J]. 高等学校计算数学学报, 2021, 43(1): 16-27.
詹涌强, 谭志明, 陈妙玲. 二维抛物型方程的高精度显式差分格式[J]. 西南师范大学学报(自然科学版), 2014, 39(5): 6-10.
马明书, 申培萍, 张利霞. 二维抛物型方程的高精度分支稳定显格式[J]. 工程数学学报, 1999, 16(3): 139-142.
马驷良. 二阶矩阵族Gn(k, Δt)一致有界的充要条件及其对差分方程稳定性的应用[J]. 高等学校计算数学学报, 1980, 2(2): 41-54.