PRALONG V, SOUZA D C S, LEUNG K T, et al. Reversible Lithium Uptake by CoP3 at Low Potential: Role of the Anion[J]. Electrochemistry Communications, 2002, 4(6): 516-520. doi: 10.1016/S1388-2481(02)00363-6
|
ZHU P P, ZHANG Z, HAO S J, et al. Multi-Channel FeP@C Octahedra Anchored on Reduced Graphene Oxide Nanosheet with Efficient Performance for Lithium-Ion Batteries[J]. Carbon, 2018, 139: 477-485. doi: 10.1016/j.carbon.2018.07.029
|
HU J H, WANG P, LIU P P, et al. In Situ Fabrication of Nano Porous NiO-Capped Ni3P Film as Anode for Li-Ion Battery with Different Lithiation Path and Significantly Enhanced Electrochemical Performance[J]. Electrochimica Acta, 2016, 220: 258-266. doi: 10.1016/j.electacta.2016.10.052
|
YU Y, HUANG S F, WANG B, et al. Achieving High-Energy Full-Cell Lithium-Storage Performance by Coupling High-Capacity V2 O3 with Low-Potential Ni2P Anode[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 19-25.
|
ZHANG C, JIAO G H, KONG F J, et al. Hierarchical Co2P Microspheres Assembled from Nanorods Grown on Reduced Graphene Oxide as Anode Material for Lithium-Ion Batteries[J]. Applied Surface Science, 2018, 459: 665-671. doi: 10.1016/j.apsusc.2018.08.043
|
ZHU P P, ZHANG Z, ZHAO P F, et al. Rational Design of Intertwined Carbon Nanotubes Threaded Porous CoP@carbon Nanocubes as Anode with Superior Lithium Storage[J]. Carbon, 2019, 142: 269-277. doi: 10.1016/j.carbon.2018.10.066
|
ZHENG J L, HUANG X M, PAN X, et al. Yolk-Shelled Ni2P@carbon Nanocomposite as High-Performance Anode Material for Lithium and Sodium Ion Batteries[J]. Applied Surface Science, 2019, 473: 699-705. doi: 10.1016/j.apsusc.2018.12.225
|
WU C, KOPOLD P, VAN AKEN P A, et al. High Performance Graphene/Ni2P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design[J]. Advanced Materials, 2017, 29(28): 1604015-1604021.
|
DU Z Z, AI W, YANG J, et al. In Situ Fabrication of Ni2P Nanoparticles Embedded in Nitrogen and Phosphorus Codoped Carbon Nanofibers as a Superior Anode for Li-Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14795-14801.
|
SHI F, XIE D, ZHONG Y, et al. Facile Synthesis of Self-Supported Ni2P nanosheet@Ni Sponge Composite for High-Rate Battery[J]. Journal of Power Sources, 2016, 328: 405-412. doi: 10.1016/j.jpowsour.2016.08.051
|
PAN G X, XIA X H, CAO F, et al. Construction of Co/Co3O4-C Ternary Core-Branch Arrays as Enhanced Anode Materials for Lithium Ion Batteries[J]. Journal of Power Sources, 2015, 293: 585-591. doi: 10.1016/j.jpowsour.2015.05.112
|
ZHANG X E, ZHAO R F, WU Q H, et al. Petal-Like MoS2 Nanosheets Space-Confined in Hollow Mesoporous Carbon Spheres for Enhanced Lithium Storage Performance[J]. ACS Nano, 2017, 11(8): 8429-8436. doi: 10.1021/acsnano.7b04078
|
LU Y, TU J P, XIONG Q Q, et al. Carbon-Decorated Single-Crystalline Ni2P Nanotubes Derived from Ni Nanowire Templates: a High-Performance Material for Li-Ion Batteries[J]. Chemistry-A European Journal, 2012, 18(19): 6031-6038. doi: 10.1002/chem.201103724
|
LU Y, TU J P, XIONG Q Q, et al. Large-Scale Synthesis of Porous Ni2P Nanosheets for Lithium Secondary Batteries[J]. CrystEngComm, 2012, 14(24): 8633-8641. doi: 10.1039/c2ce26378e
|
LI Q, MA J J, WANG H J, et al. Interconnected Ni2P Nanorods Grown on Nickel Foam for Binder Free Lithium Ion Batteries[J]. Electrochimica Acta, 2016, 213: 201-206. doi: 10.1016/j.electacta.2016.07.105
|
FENG Y Y, ZHANG H J, MU Y P, et al. Monodisperse Sandwich-Like Coupled Quasi-Graphene Sheets Encapsulating Ni2P Nanoparticles for Enhanced Lithium-Ion Batteries[J]. Chemistry-A European Journal, 2015, 21(25): 9229-9235. doi: 10.1002/chem.201500950
|
ZHOU G M, WANG D W, LI F, et al. Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313. doi: 10.1021/cm101532x
|
TENG Y Q, ZHAO H L, ZHANG Z J, et al. MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes[J]. ACS Nano, 2016, 10(9): 8526-8535. doi: 10.1021/acsnano.6b03683
|