KERMACK W O, MACKENDRICK A G. Contribution to the Mathematical Theory of Epidemics[J]. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700-721.
ZHANG Y, FAN K G, GAO S J, et al. A Remark on Stationary Distribution of a Stochastic SIR Epidemic Model with Double Saturated Rates[J]. Applied Mathematics Letters, 2018, 76: 46-52. doi: 10.1016/j.aml.2017.08.002
ZHANG X, LIU X N. Backward Bifurcation of an Epidemic Model with Saturated Treatment Function[J]. Journal of Mathematical Analysis and Applications, 2008, 348(1): 433-443. doi: 10.1016/j.jmaa.2008.07.042
XU Y L, LI L W. Globalexponential Stability of an Epidemic Model with Saturated and Periodic Incidence Rate[J]. Mathematical Methods in the Applied Sciences, 2016, 39(13): 3650-3658. doi: 10.1002/mma.3812
ZHANG Y Y, JIA J W. Hopf Bifurcation of an Epidemic Model with a Nonlinear Birth in Population and Vertical Transmission[J]. Applied Mathematics and Computation, 2014, 230: 164-173. doi: 10.1016/j.amc.2013.12.084
HEFFERNAN J M, SMITH R J, WAHL L M. Perspectives on the Basic Reproductive Ratio[J]. Journal of the Royal Society, Interface, 2005, 2(4): 281-293. doi: 10.1098/rsif.2005.0042
WEI F Y, CHEN F X. Stochastic Permanence of an SIQS Epidemic Model with Saturated Incidence and Independent Random Perturbations[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 453: 99-107. doi: 10.1016/j.physa.2016.01.059
ZHAO D L, ZHANG T S, YUAN S L. The Threshold of a Stochastic SIVS Epidemic Model with Nonlinear Saturated Incidence[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 443: 372-379. doi: 10.1016/j.physa.2015.09.092
马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 2版. 北京: 科学出版社, 2015.
CASTILLO-CHAVEZ C, SONG B J. Dynamical Models of Tuberculosis and Their Applications[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361
COOKE K, VAN DEN DRIESSCHE P, ZOU X. Interaction of Maturation Delay and Nonlinear Birth in Population and Epidemic Models[J]. Journal of Mathematical Biology, 1999, 39(4): 332-352. doi: 10.1007/s002850050194
QIU Z P. Dynamical Behavior of a Vector-Host Epidemic Model with Demographic Structure[J]. Computers & Mathematics With Applications, 2008, 56(12): 3118-3129.
刘亭, 张国洪. 一个考虑信息负反馈和饱和治疗的传染病模型[J]. 西南师范大学学报(自然科学版), 2019, 44(1): 7-13.
D'ONOFRIO A, MANFREDI P. Information-Related Changes in Contact Patterns may Trigger Oscillations in the Endemic Prevalence of Infectious Diseases[J]. Journal of Theoretical Biology, 2009, 256(3): 473-478. doi: 10.1016/j.jtbi.2008.10.005
BUONOMO B, D'ONOFRIO A, LACITIGNOLA D. Globally Stable Endemicity for Infectious Diseases with Information-Related Changes in Contact Patterns[J]. Applied Mathematics Letters, 2012, 25(7): 1056-1060. doi: 10.1016/j.aml.2012.03.016
KUMAR A, SRIVASTAVA P K, TAKEUCHI Y. Modeling the Role of Information and Limited Optimal Treatment on Disease Prevalence[J]. Journal of Theoretical Biology, 2017, 414: 103-119. doi: 10.1016/j.jtbi.2016.11.016