GUL M J, URFA G M, PAUL A, et al. Mid-Term Electricity Load Prediction Using CNN and Bi-LSTM[J]. the Journal of Supercomputing, 2021, 77(10): 10942-10958. doi: 10.1007/s11227-021-03686-8
SMITH T B. Electricity Theft: a Comparative Analysis[J]. Energy Policy, 2004, 32(18): 2067-2076. doi: 10.1016/S0301-4215(03)00182-4
程超, 张汉敬, 景志敏, 等. 基于离群点算法和用电信息采集系统的反窃电研究[J]. 电力系统保护与控制, 2015, 43(17): 69-74. doi: 10.7667/j.issn.1674-3415.2015.17.011
韩谷静, 殷小贡, 秦亮, 等. 电能计量设备防电流法窃电新技术[J]. 电测与仪表, 2007, 44(10): 29-32. doi: 10.3969/j.issn.1001-1390.2007.10.009
WANG F, YANG F, LIU T Y, et al. Measuring Energy Meter of Three-Phase Electricity-Stealing Defense System[C] // 2011 6th IEEE Conference on Industrial Electronics and Applications, June 21-23, 2011, Beijing China, IEEE, 2011: 11-15.
徐京生, 阎泽年. 抗调光器干扰单相防窃电智能电表的设计及实现[J]. 电工技术, 2019 (2): 38-39, 41. doi: 10.3969/j.issn.1002-1388.2019.02.016
周未, 朱瑞德, 王金全. 基于GSM网络的防窃电实时监控系统方案探讨[J]. 电力自动化设备, 2004, 24(2): 64-66, 69. doi: 10.3969/j.issn.1006-6047.2004.02.019
ZHENG D I, WANG S. Research on Measuring Equipment of Single-Phase Electricity-Stealing with Long-Distance Monitoring Function[C] // 2009 Asia-Pacific Power and Energy Engineering Conference, March 27-31, 2009, Wuhan, China. IEEE, 2009: 1-4.
丁国华, 神祥伟. 基于用电信息采集的智能反窃电技术探析[J]. 电子测试, 2016(S1): 128, 118.
HUANG Y. Research on the Line Loss Rate Prediction Technology Based on the Kernel Partial Least Squares[J]. Journal of Convergence Information Technology, 2012, 7(11): 376-383. doi: 10.4156/jcit.vol7.issue11.47
XIE F, ZHOU B X, ZHANG Q, et al. Line Loss Rate Forecasting Based on Grey Model and Combination of Neural Network[J]. Advanced Materials Research, 2012, 621: 340-343. doi: 10.4028/www.scientific.net/AMR.621.340
XU N, DANG Y G, GONG Y D, et al. Novel Grey Prediction Model with Nonlinear Optimized Time Response Method for Forecasting of Electricity Consumption in China[J]. Energy, 2017, 118: 473-480. doi: 10.1016/j.energy.2016.10.003
李亚, 刘丽平, 李柏青, 等. 基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J]. 中国电机工程学报, 2016, 36(17): 4543-4552.
王庆宁, 张东辉, 孙香德, 等. 基于GA-BP神经网络的反窃电系统研究与应用[J]. 电测与仪表, 2018, 55(11): 35-40. doi: 10.3969/j.issn.1001-1390.2018.11.007
HONG H W, SU Y Q, ZHENG P, et al. A SVM-Based Detection Method for Electricity Stealing Behavior of Charging Pile[J]. Procedia Computer Science, 2021, 183: 295-302. doi: 10.1016/j.procs.2021.02.062
郑征, 刘刚, 张琳娟, 等. 基于LSSVM的光伏发电三层筛选窃电识别方法[J]. 电力电子技术, 2017, 51(10): 30-32, 45.
SHEN Y, SHAO P, CHEN G H, et al. An Identification Method of Anti-Electricity Theft Load Based on Long and Short-Term Memory Network[J]. Procedia Computer Science, 2021, 183: 440-447. doi: 10.1016/j.procs.2021.02.082
郑建宁. 基于深度学习的窃电行为检测方法[J]. 信息技术, 2019, 43(2): 156-159.
缪俞蓉, 陈森博. 用于智能电网电价预测的深度学习模型[J]. 西南师范大学学报(自然科学版), 2021, 46(5): 153-158.
PAN N, SHEN X, GUO X J, et al. Study on Intelligent Anti-Electricity Stealing Early-Warning Technology Based on Convolutional Neural Networks[J]. Journal of Intelligent and Fuzzy Systems, 2021, 40(6): 1-7.
HU Z, ZHANG J J, GE Y. Handling Vanishing Gradient Problem Using Artificial Derivative[J]. IEEE Access, 2021, 9: 22371-22377.
KOU Z, FANG Y J. An Improved Residual Network for Electricity Power Meter Error Estimation[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(8): 1959024.