GARONZI M, LIMA I. On the Number of Cyclic Subgroups of a Finite Group [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49(3): 515-530. doi: 10.1007/s00574-018-0068-x
TǍRNǍUCEANU M. Finite Groups with a Certain Number of Cyclic Subgroups [J]. The American Mathematical Monthly, 2015, 122(3): 275-276. doi: 10.4169/amer.math.monthly.122.03.275
TǍRNǍUCEANU M. Finite Groups with a Certain Number of Cyclic Subgroups Ⅱ [J]. Acta Universitatis Sapientiae Mathematica, 2018, 10(2): 375-377. doi: 10.2478/ausm-2018-0029
SONG K, ZHOU W. On The Number of Cyclic Subgroups in Finite Groups [J]. Italian Journal of Pure and Applied Mathematics, 2019, 41: 593-596.
姜富铭, 周伟. 具有特殊循环子群个数的有限群[J]. 西南师范大学学报(自然科学版), 2019, 44(2): 14-17.
BELSHOFF R, DILLSTROM J, REID L. Finite Groups with a Prescribed Number of Cyclic Subgroups [J]. Communications in Algebra, 2019, 47(3): 1043-1056. doi: 10.1080/00927872.2018.1499923
BELSHOFF R, DILLSTROM J, REID L. Addendum to "Finite Groups with a Prescribed Number of Cyclic Subgroups" [J]. Communications in Algebra, 2019, 47(10): 3939-3940. doi: 10.1080/00927872.2019.1572172
钱焱, 陈贵云. 用交换子群的个数刻画A5S5[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 5-8.
钱焱, 陈贵云. 同阶交换子群个数之集为{1, 3}的有限群[J]. 西南大学学报(自然科学版), 2021, 43(10): 100-104.
郭红如, 吕恒. 可以表示成3个或4个交换子群并的群[J]. 西南大学学报(自然科学版), 2017, 39(8): 97-100.
雷倩, 何立官. 关于Conway单群和Fischer单群的刻画[J]. 西南大学学报(自然科学版), 2020, 42(10): 96-100.
TǍRNǍUCEANU M, LAZOREC M S. A Note on the Number of Cyclic Subgroups of a Finite Group [EB/OL]. 2018: arxiv: 1805.00301[2021-12-25]. https://arxiv.org/abs/1805.00301.
TǍRNǍUCEANU M. A Result on the Number of Cyclic Subgroups of a Finite Group [J]. Proceedings of the Japan Academy Series A Mathematical Sciences, 2020, 96(10): 93-94.
徐明曜. 有限群初步[M]. 北京: 科学出版社, 2012.
杨子胥. 近世代数[M]. 3版. 北京: 高等教育出版社, 2011.
施武杰. A5的一个特征性质[J]. 西南师范大学学报(自然科学版), 1986, 11(3): 11-14.