ELBEIN A D, PAN Y T, PASTUSZAK I, et al. New Insights on Trehalose: a Multifunctional Molecule[J]. Glycobiology, 2003, 13(4): 17-27. doi: 10.1093/glycob/cwg047
秦加敏, 罗术东, 和绍禹, 等. 昆虫海藻糖与海藻糖酶的特性及功能研究[J]. 环境昆虫学报, 2015, 37(1): 163-169.
MITSUMASU K, AZUMA M, NⅡMI T, et al. Membrane-Penetrating Trehalase from Silkworm Bombyx Mori. Molecular Cloning and Localization in Larval Midgut[J]. Insect Molecular Biology, 2005, 14(5): 501-508. doi: 10.1111/j.1365-2583.2005.00581.x
唐斌, 魏苹, 陈洁, 等. 昆虫海藻糖酶的基因特性及功能研究进展[J]. 昆虫学报, 2012, 55(11): 1315-1321. doi: 10.16380/j.kcxb.2012.11.008
CHEN J, TANG B, CHEN H X, et al. Different Functions of the Insect Soluble and Membrane-Bound Trehalase Genes in Chitin Biosynthesis Revealed by RNA Interference[J]. PLoS One, 2010, 5(4): e10133. doi: 10.1371/journal.pone.0010133
唐斌, 肖仲久, 曾伯平, 等. 赤拟谷盗TRE基因家族特性及RNAi抑制表达效果分析[J]. 环境昆虫学报, 2019, 41(6): 1311-1320.
刘晓健, 张欢欢, 李大琪, 等. 飞蝗可溶型海藻糖酶基因的序列分析及mRNA表达特性[J]. 昆虫学报, 2012, 55(11): 1264-1271. doi: 10.16380/j.kcxb.2012.11.004
张倩, 鲁鼎浩, 蒲建, 等. 灰飞虱海藻糖酶基因的克隆及RNA干扰效应[J]. 昆虫学报, 2012, 55(8): 911-920. doi: 10.16380/j.kcxb.2012.08.002
范柯琴, 金利群, 郑裕国. 海藻糖酶的酶学特性及其作为新农药靶标的开发应用[J]. 化学与生物工程, 2009, 26(4): 7-11. doi: 10.3969/j.issn.1672-5425.2009.04.002
GIORDANENGO P, BRUNISSEN L, RUSTERUCCI C, et al. Compatible Plant-Aphid Interactions: How Aphids Manipulate Plant Responses[J]. Comptes Rendus Biologies, 2010, 333(6/7): 516-523.
BRAULT V, UZEST M, MONSION B, et al. Aphids as Transport Devices for Plant Viruses[J]. Comptes Rendus Biologies, 2010, 333(6/7): 524-538.
BRISSON J A, STERN D L. The Pea Aphid, Acyrthosiphon pisum: an Emerging Genomic Model System for Ecological, Developmental and Evolutionary Studies[J]. BioEssays, 2006, 28(7): 747-755. doi: 10.1002/bies.20436
YE C, JIANG Y D, AN X, et al. Effects of RNAi-Based Silencing of Chitin Synthase Gene on Moulting and Fecundity in Pea Aphids (Acyrthosiphon pisum)[J]. Scientific Reports, 2019, 9(1): 3694. doi: 10.1038/s41598-019-39837-4
LIVAK K J, SCHMITTGEN T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
叶超. 豌豆蚜点滴与注射法递送dsRNA介导的RNAi效率及其摄取机制研究[D]. 重庆: 西南大学, 2019.
AUCLAIR J L, CARTIER J J. Pea Aphid: Rearing on a Chemically Defined Diet[J]. Science, 1963, 142(3595): 1068-1069. doi: 10.1126/science.142.3595.1068
TAKIGUCHI M U, NIIMI T, SU Z H, et al. Trehalase from Male Accessory Gland of an Insect, Tenebrio Molitor. cDNA Sequencing and Developmental Profile of the Gene Expression[J]. Biochemical Journal, 1992, 288(1): 19-22. doi: 10.1042/bj2880019
BANSAL R, MIAN M A R, MITTAPALLI O, et al. Molecular Characterization and Expression Analysis of Soluble Trehalase Gene in Aphis Glycines, a Migratory Pest of Soybean[J]. BulletinofEntomological Research, 2013, 103(3): 286-295.
LI K Q, XING C H, YAO Z H, et al. PbrMYB21, a Novel MYB Protein of Pyrus Betulaefolia, Functions in Drought Tolerance and Modulates Polyamine Levels by Regulating Arginine Decarboxylase Gene[J]. Plant Biotechnology Journal, 2017, 15(9): 1186-1203. doi: 10.1111/pbi.12708
MAMTA B, RAJAM M V. RNAi Technology: a New Platform for Crop Pest Control[J]. Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology, 2017, 23(3): 487-501. doi: 10.1007/s12298-017-0443-x
齐江卫, 龚亮, 王会冬, 等. RNAi及其在害虫防治中的应用[J]. 西北农林科技大学学报(自然科学版), 2014, 42(7): 148-156. doi: 10.13207/j.cnki.jnwafu.2014.07.014
TERENIUS O, PAPANICOLAOU A, GARBUTT J S, et al. RNA Interference in Lepidoptera: an Overview of Successful and Unsuccessful Studies and Implications for Experimental Design[J]. Journal of Insect Physiology, 2011, 57(2): 231-245. doi: 10.1016/j.jinsphys.2010.11.006
ZHAO Y J, SUI X Y, XU L J, et al. Plant-Mediated RNAi of Grain Aphid CHS1 Gene Confers Common Wheat Resistance Against Aphids[J]. Pest Management Science, 2018, 74(12): 2754-2760. doi: 10.1002/ps.5062
SHANG F, XIONG Y, XIA W K, et al. Identification, Characterization and Functional Analysis of a Chitin Synthase Gene in the Brown Citrus Aphid, Toxoptera Citricida (Hemiptera, Aphididae)[J]. Insect Molecular Biology, 2016, 25(4): 422-430. doi: 10.1111/imb.12228
MAO J J, ZENG F R. Plant-Mediated RNAi of a Gap Gene-Enhanced Tobacco Tolerance Against the Myzus Persicae[J]. Transgenic Research, 2014, 23(1): 145-152. doi: 10.1007/s11248-013-9739-y
COOPER AM, SILVER K, ZHANG J, et al. Molecular Mechanisms Influencing Efficiency of RNA Interference in Insects[J]. Pest Management Science, 2019, 75(1): 18-28. doi: 10.1002/ps.5126
SPIT J, PHILIPS A, WYNANT N, et al. Knockdown of Nuclease Activity in the Gut Enhances RNAi Efficiency in the Colorado Potato Beetle, Leptinotarsa Decemlineata, but not in the Desert Locust, Schistocerca Gregaria[J]. Insect Biochemistry & Molecular Biology, 2017, 81: 103-116.