柴岩, 张宗文. 荞麦研究进展: 第十届国际荞麦会议论文集[M]. 杨凌: 西北农林科技大学出版社, 2007.
蔡齐宗, 王佳蕊, 陈庆富, 等. 苦荞全基因组SSR位点鉴定及分子标记开发[J]. 河南农业大学学报, 2022, 56(3): 392-400. doi: 10.16445/j.cnki.1000-2340.20220506.001
李春花, 加英多拉, 田娟, 等. 自交可育红花甜荞种质资源创新利用研究[J]. 南方农业学报, 2021, 52(10): 2751-2757. doi: 10.3969/j.issn.2095-1191.2021.10.015
KOYAMA M, NAKAMURA C, NAKAMURA K. Changes in Phenols Contents from Buckwheat Sprouts during Growth Stage[J]. Journal of Food Science and Technology, 2013, 50(1): 86-93. doi: 10.1007/s13197-011-0316-1
柴岩, 王鹏科, 冯佰利. 中国小杂粮产业发展指南[M]. 杨凌: 西北农林科技大学出版社, 2007.
GARBER R J, QUISENBERRY K S. Self-Fertilization in Buckwheat[J]. J Agric Res, 1927, 34: 185-190.
SŁOMKA A, SYCHTA K, DUBERT F, et al. Embryological Background of Low Seed Set in Distylous Common Buckwheat (Fagopyrum esculentum Moench) with Biased Morph Ratios, and Biostimulant-Induced Improvement of it[J]. Crop and Pasture Science, 2017, 68(7): 680-690. doi: 10.1071/CP17009
OHNISHI O. Search for the Wild Ancestor of Buckwheat. Ⅰ. Description of New Fagopyrum (Polygonaceae) Species and Their Distribution in China and Himalayan Hills[J]. Fagopyrum, 1998, 15: 18-28.
MATSUI K, TETSUKA T, NISHIO T, et al. Heteromorphic Incompatibility Retained in Self-Compatible Plants Produced by a Cross between Common and Wild Buckwheat[J]. New Phytologist, 2003, 159(3): 701-708. doi: 10.1046/j.1469-8137.2003.00840.x
WANG Y J, SCARTH R, CAMPBELL G C. Inheritance of Seed Shattering in Interspecific Hybrids between Fagopyrum esculentum and F. homotropicum[J]. Crop Science, 2005, 45(2): 693-697. doi: 10.2135/cropsci2005.0693
陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(3): 1-7, 131. doi: 10.16614/j.gznuj.zrb.2018.03.001
MATSUI K, YASUI Y S. Buckwheat Heteromorphic Self-Incompatibility: Genetics, Genomics and Application to Breeding[J]. Breeding Science, 2020, 70(1): 32-38. doi: 10.1270/jsbbs.19083
YASUI Y, MORI M, AII J, et al. S-LOCUS EARLY FLOWERING 3 is Exclusively Present in the Genomes of Short-Styled Buckwheat Plants that Exhibit Heteromorphic Self-Incompatibility[J]. PLoS ONE, 2012, 7(2): e31264. doi: 10.1371/journal.pone.0031264
WOO S H, ADACHI T, JONG S K, et al. Inheritance of Self-Compatibility and Flower Morphology in an Inter-Specific Buckwheat Hybrid[J]. Canadian Journal of Plant Science, 1999, 79(4): 483-490. doi: 10.4141/P98-117
MATSUI K, NISHIO T, TETSUKA T. Genes Outside the S Supergene Suppress S Functions in Buckwheat (Fagopyrum esculentum)[J]. Annals of Botany, 2004, 94(6): 805-809. doi: 10.1093/aob/mch206
MIZUNO N, YASUI Y S. Gene Flow Signature in the S-Allele Region of Cultivated Buckwheat[J]. BMC Plant Biology, 2019, 19(1): 125-138. doi: 10.1186/s12870-019-1730-1
MATSUI K, YASUI Y S. Genetic and Genomic Research for the Development of an Efficient Breeding System in Heterostylous Self-Incompatible Common Buckwheat (Fagopyrum esculentum)[J]. Theoretical and Applied Genetics, 2020, 133(5): 1641-1653. doi: 10.1007/s00122-020-03572-6
BOWLER C, CHUA N H. Emerging Themes of Plant Signal Transduction[J]. The Plant Cell, 1994, 6(11): 1529-1541.
FOURQUIN C, FERRÁNDIZ C. Functional Analyses of AGAMOUS Family Members in Nicotiana Benthamiana Clarify the Evolution of Early and Late Roles of C-Function Genes in Eudicots[J]. The Plant Journal, 2012, 71(6): 990-1001. doi: 10.1111/j.1365-313X.2012.05046.x
LU S W, ZHANG Y, ZHU K J, et al. The Citrus Transcription Factor CsMADS6 Modulates Carotenoid Metabolism by Directly Regulating Carotenogenic Genes[J]. Plant Physiology, 2018, 176(4): 2657-2676. doi: 10.1104/pp.17.01830
USHIJIMA K, NAKANO R, BANDO M, et al. Isolation of the Floral Morph-Related Genes in Heterostylous Flax (Linum Grandiflorum): The Genetic Polymorphism and the Transcriptional and Post-Transcriptional Regulations of the S Locus[J]. The Plant Journal for Cell and Molecular Biology, 2012, 69(2): 317-331. doi: 10.1111/j.1365-313X.2011.04792.x
VIERSTRA R D. The Ubiquitin/26S Proteasome Pathway, the Complex last Chapter in the Life of many Plant Proteins[J]. Trends in Plant Science, 2003, 8(3): 135-142. doi: 10.1016/S1360-1385(03)00014-1
SHI T X, LI R Y, CHEN Q J, et al. De Novo Sequencing of Seed Transcriptome and Development of Genic-SSR Markers in Common Buckwheat (Fagopyrum esculentum)[J]. Molecular Breeding, 2017, 37(12): 1-15.
FANG X M, ZHANG Y L, ZHANG Y K, et al. De Novo Transcriptome Assembly and Identification of Genes Related to Seed Size in Common Buckwheat (Fagopyrum esculentum M. )[J]. Breeding Sci, 2019, 69(3): 487-497. doi: 10.1270/jsbbs.18194
XU J M, FAN W, JIN J F, et al. Transcriptome Analysis of Al-Induced Genes in Buckwheat (Fagopyrum esculentum Moench) Root Apex: New Insight into Al Toxicity and Resistance Mechanisms in an Al Accumulating Species[J]. Frontiers in Plant Science, 2017, 8: 1141. doi: 10.3389/fpls.2017.01141
黄娟, 邓娇, 陈庆富. 荞麦根的转录组学分析及黄酮合成基因的鉴定[J]. 中国农业科技导报, 2017, 19(2): 9-19. doi: 10.13304/j.nykjdb.2016.206
YOKOSHO K, YAMAJI N, MA J F. Global Transcriptome Analysis of Al-Induced Genes in an Al-Accumulating Species, Common Buckwheat (Fagopyrum esculentum Moench)[J]. Plant and Cell Physiology, 2014, 55(12): 2077-2091. doi: 10.1093/pcp/pcu135
LOGACHEVA M D, KASIANOV A S, VINOGRADOV D V, et al. De Novo Sequencing and Characterization of Floral Transcriptome in Two Species of Buckwheat (Fagopyrum)[J]. BMC Genomics, 2011, 12: 30. doi: 10.1186/1471-2164-12-30
FANG Z W, HOU Z H, WANG S P, et al. Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat (Fagopyrum esculentum Moench) Cotyledons and Flowers[J]. International Journal of Molecular Sciences, 2019, 20(6): 1493. doi: 10.3390/ijms20061493
LANGE B M, RUJAN T, MARTIN W, et al. Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways across Genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13172-13177. doi: 10.1073/pnas.240454797
LIU Y, WANG H, YE H C, et al. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering[J]. Journal of Integrative Plant Biology, 2005, 47(7): 769-782. doi: 10.1111/j.1744-7909.2005.00111.x
TETALI S D. Terpenes and Isoprenoids: a Wealth of Compounds for Global Use[J]. Planta, 2019, 249(1): 1-8. doi: 10.1007/s00425-018-3056-x
PICHERSKY E, GERSHENZON J. The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense[J]. Current Opinion in Plant Biology, 2002, 5(3): 237-243. doi: 10.1016/S1369-5266(02)00251-0
BRODERICK S R, WIJERATNE S, WIJERATN A J, et al. RNA-Sequencing Reveals Early, Dynamic Transcriptome Changes in the Corollas of Pollinated Petunias[J]. BMC Plant Biology, 2014, 14: 307. doi: 10.1186/s12870-014-0307-2
OVERVOORDE P, FUKAKI H, BEECKMAN T. Auxin Control of Root Development[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(6): a001537.
CHEN D, ZHAO J. Free IAA in Stigmas and Styles during Pollen Germination and Pollen Tube Growth of Nicotiana Tabacum[J]. Physiologia Plantarum, 2008, 134(1): 202-215. doi: 10.1111/j.1399-3054.2008.01125.x
HASENSTEIN K H, ZAVADA M S. Auxin Modification of the Incompatibility Response in Theobroma Cacao[J]. Physiologia Plantarum, 2001, 112(1): 113-118. doi: 10.1034/j.1399-3054.2001.1120115.x
KOVALEVA L, ZAKHAROVA E. Hormonal Status of the Pollen-Pistil System at the Progamic Phase of Fertilization after Compatible and Incompatible Pollination in Petunia Hybrida L[J]. Sexual Plant Reproduction, 2003, 16(4): 191-196. doi: 10.1007/s00497-003-0189-1
SOLFANELLI C, BARTOLINI S, VITAGLIANO C, et al. Immunolocalization and Quantification of IAA after Self-and Free-Pollination in Olea Europaea L[J]. Scientia Horticulturae, 2006, 110(4): 345-351. doi: 10.1016/j.scienta.2006.06.026
FERNÁNDEZ-CALVO P, CHINI A, FERNÁNDEZ-BARBERO G, et al. The Arabidopsis BHLH Transcription Factors MYC3 and MYC4 are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses[J]. The Plant Cell, 2011, 23(2): 701-715. doi: 10.1105/tpc.110.080788
PARK J H, HALITSCHKE R, KIM H B, et al. A Knock-out Mutation in Allene Oxide Synthase Results in Male Sterility and Defective Wound Signal Transduction in Arabidopsis Due to a Block in Jasmonic Acid Biosynthesis[J]. The Plant Journal, 2002, 31(1): 1-12. doi: 10.1046/j.1365-313X.2002.01328.x
QI T C, SONG S S, REN Q C, et al. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/BHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis Thaliana[J]. The Plant Cell, 2011, 23(5): 1795-1814. doi: 10.1105/tpc.111.083261
YOSHIDA Y, SANO R, WADA T, et al. Jasmonic Acid Control of GLABRA3 Links Inducible Defense and Trichome Patterning in Arabidopsis[J]. Development, 2009, 136(6): 1039-1048. doi: 10.1242/dev.030585
JIANG Y J, LIANG G, YANG S Z, et al. Arabidopsis WRKY57 Functions as a Node of Convergence for Jasmonic Acid-and Auxin-Mediated Signaling in Jasmonic Acid-Induced Leaf Senescence[J]. The Plant Cell, 2014, 26(1): 230-245. doi: 10.1105/tpc.113.117838
ZHANG X, ZHU Z Q, AN F Y, et al. Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis[J]. The Plant Cell, 2014, 26(3): 1105-1117. doi: 10.1105/tpc.113.122002
SONG S S, QI T C, HUANG H, et al. The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000-1013. doi: 10.1105/tpc.111.083089
HUANG H, GONG Y L, LIU B, et al. The DELLA Proteins Interact with MYB21 and MYB24 to Regulate Filament Elongation in Arabidopsis[J]. BMC Plant Biology, 2020, 20(1): 64-72. doi: 10.1186/s12870-020-2274-0
SHI D Q, TANG C, WANG R Z, et al. Transcriptome and Phytohormone Analysis Reveals a Comprehensive Phytohormone and Pathogen Defence Response in Pear Self-/Cross-Pollination[J]. Plant Cell Reports, 2017, 36(11): 1785-1799. doi: 10.1007/s00299-017-2194-0
ACHARD P, GENSCHIK P. Releasing the Brakes of Plant Growth: How GAs Shutdown DELLA Proteins[J]. Journal of Experimental Botany, 2009, 60(4): 1085-1092. doi: 10.1093/jxb/ern301
YAMAGUCHI S. Gibberellin Metabolism and Its Regulation[J]. Annual Review of Plant Biology, 2008, 59: 225-251. doi: 10.1146/annurev.arplant.59.032607.092804
LEE S, CHENG H, KING K E, et al. Gibberellin Regulates Arabidopsis Seed Germination via RGL2, a GAI/RGA-Like Gene whose Expression is Up-Regulated Following Imbibition[J]. Genes & Development, 2002, 16(5): 646-658.
TYLER L, THOMAS S G, HU J H, et al. DELLA Proteins and Gibberellin-Regulated Seed Germination and Floral Development in Arabidopsis[J]. Plant Physiology, 2004, 135(2): 1008-1019. doi: 10.1104/pp.104.039578
DILL A, SUN T P. Synergistic Derepression of Gibberellin Signaling by Removing RGA and GAI Function in Arabidopsis Thaliana[J]. Genetics, 2001, 159(2): 777-785. doi: 10.1093/genetics/159.2.777