NEWELL G F. A Moving Bottleneck[J]. Transportation Research Part B: Methodological, 1998, 32(8): 531-537. doi: 10.1016/S0191-2615(98)00007-1
|
LAVAL J A, DAGANZO C F. Lane-Changing in Traffic Streams[J]. Transportation Research Part B: Methodological, 2006, 40(3): 251-264. doi: 10.1016/j.trb.2005.04.003
|
侯忠生, 晏静文. 带有迭代学习前馈的快速路无模型自适应入口匝道控制[J]. 自动化学报, 2009, 35(5): 588-595.
|
PERRAKI G, RONCOLI C, PAPAMICHAIL I, et al. Evaluation of a Model Predictive Control Framework for Motorway Traffic Involving Conventional and Automated Vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 456-471. doi: 10.1016/j.trc.2018.05.002
|
郝建根. 数据驱动控制方法在交通控制中的应用研究[D]. 北京: 北京交通大学, 2014.
|
ZHAO W, NGODUY D, SHEPHERD S, et al. A Platoon Based Cooperative Eco-Driving Model for Mixed Automated and Human-Driven Vehicles at a Signalised Intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821. doi: 10.1016/j.trc.2018.05.025
|
RIOS T J, MALIKOPOULOS AA. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and Merging at Highway On-Ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1066-1077. doi: 10.1109/TITS.2016.2600504
|
CARUNTU C F, FERARIU L, PASCAL C, et al. Connected Cooperative Control for Multiple-Lane Automated Vehicle Flocking on Highway Scenarios[C] //2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). Sinaia, Romania. IEEE, 2019: 791-796.
|
来飞, 黄超群, 胡博. 智能汽车自动驾驶技术的发展与挑战[J]. 西南大学学报(自然科学版), 2019, 41(8): 124-133.
|
LUO Y G, XIANG Y, CAO K, et al. A Dynamic Automated Lane ChangeManeuver Based on Vehicle-to-Vehicle Communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. doi: 10.1016/j.trc.2015.11.011
|
YANG D, ZHENG S, WEN C, et al. A Dynamic Lane-Changing Trajectory Planning Model for Automated Vehicles[J]. TransportationResearch Part C: Emerging Technologies, 2018, 95: 228-247. doi: 10.1016/j.trc.2018.06.007
|
LIU K, GONG J W, KURT A, et al. Dynamic Modeling and Control of High-speed Automated Vehicles for Lane Change Maneuver[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 329-339. doi: 10.1109/TIV.2018.2843177
|
张荣辉, 游峰, 初鑫男, 等. 车—车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191.
|
DING J, LI L, PENG H E, et al. A Rule-Based Cooperative Merging Strategy for Connected and Automated Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3436-3446. doi: 10.1109/TITS.2019.2928969
|
STERN R E, CUI S, DELLE M M L, et al. Dissipation of Stop-and-Go Waves via Control of Autonomous Vehicles: Field Experiments[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 205-221. doi: 10.1016/j.trc.2018.02.005
|
NTOUSAKIS I A, NIKOLOS I K, PAPAGEORGIOU M. Optimal Vehicle Trajectory Planning in the Context of Cooperative Merging on Highways[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 464-488. doi: 10.1016/j.trc.2016.08.007
|
PHAN TT, NGODUY D, LE L B. Space Distribution Method for Autonomous Vehicles at a Signalized Multi-Lane Intersection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(12): 5283-5294. doi: 10.1109/TITS.2019.2954201
|
HAN Y, AHN S. Variable Speed Release (VSR): Speed Control to Increase Bottleneck Capacity[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 298-307. doi: 10.1109/TITS.2019.2891314
|
PHAN TT, LE L B, NGODUY D. A Cooperative Space Distribution Method for Autonomous Vehicles at a Lane-Drop Bottleneck on Multi-Lane Freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3710-3723.
|
LIGHT M J, WHITHAM B. On Kinematic Waves. Ⅰ: Flow Movement in Long Rivers[C] //Proceedings of Royal Society of London (Series A), 1955: 281-316.
|
SONG M X, WANG N, GORDON T, et al. Flow-Field Guided Steering Control for Rigid Autonomous Ground Vehicles in Low-Speed Manoeuvring[J]. Vehicle System Dynamics, 2018, 57(8): 1090-1107.
|
CHENG S, LI L, LIU Y G, et al. Virtual Fluid-Flow-Model-Based Lane-Keeping Integrated with Collision Avoidance Control System Design for Autonomous Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6232-6241. doi: 10.1109/TITS.2020.2990211
|
WANG D H, YANG S H, CHU L Y. Modeling Car-Following Dynamics during the Starting and Stopping Process Based on a Spring System Model[J]. Tsinghua Science and Technology, 2004, 9(6): 643-652.
|
JIANG L, JI J, REN Y, et al. Risk Modeling and Quantification of a Platoon in Mixed Traffic Based on the Mass-Spring-Damper Model[J]. Journal of Advanced Transportation, 2020, 2020(12): 1-12.
|
MUNIGETY C R. Conformity and Stability Analysis of a Modified Spring-Mass-Damper System Dynamics-Based Car-Following Model[J]. International Journal of Modern Physics B, 2019, 33(6): 1950025. doi: 10.1142/S0217979219500255
|
BANG S, AHN S. Control of Connected and Autonomous Vehicles with Cut-in Movement Using Spring Mass Damper System[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(20): 133-143.
|
秦严严, 胡兴华, 何兆益, 等. CACC车头时距与混合交通流稳定性的解析关系[J]. 交通运输系统工程与信息, 2019, 19(6): 61-67.
|
MILANÉ V, SHLADOVER S E. Modeling Cooperative and Autonomous Adaptive Cruise Control Dynamic Responses Using Experimental Data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
|
XIAO L, WANG M, VAN A B. Realistic Car-Following Models for Microscopic Simulation of Adaptive and Cooperative Adaptive Cruise Control Vehicles[J]. Transportation Research Record Journal of the Transportation Research Board, 2017, 2623(1): 1-9.
|
XIAO L, WANG M, SCHAKEL W, et al. Unravelling Effects of Cooperative Adaptive Cruise Control Deactivation on Traffic Flow Characteristics at Merging Bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 380-397.
|
ERDMANN J. SUMO's Lane-Changing Model[M] //Modeling Mobility with Open Data. Cham: Springer International Publishing, 2015: 105-123.
|