PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
|
CARPINTERI A, MAINARDI F. Fractals and Fractional Calculus in Continuum Mechanics[M]. New York: Springer, 1997.
|
MAINARDI F. Fractional Calculus and Waves in Linear Viscoelasticity[M]. London: Imperial College Press, 2010.
|
D'ABBICCO M, EBERT M R, PICON T H. The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation[J]. Journal of Fourier Analysis and Applications, 2019, 25(3): 696-731. doi: 10.1007/s00041-018-9627-1
|
MEZADEK A K, REISSIG M. Semi-Linear Fractionalσ-Evolution Equations with Mass or Power Non-Linearity[J]. Nonlinear Differential Equations and Applications, 2018, 25(5): 42-85. doi: 10.1007/s00030-018-0530-x
|
ABDELATIF K M. Semi-Linear Fractionalσ-Evolution Equations with Nonlinear Memory[J]. Journal of Partial Differential Equations, 2020, 33(4): 291-312. doi: 10.4208/jpde.v33.n4.1
|
MEZADEK A K. Global Existence of Small Data Solutions to Semi-Linear Fractionalσ-Evolution Equations with Mass and Nonlinear Memory[J]. Mediterranean Journal of Mathematics, 2020, 17(5): 159-179. doi: 10.1007/s00009-020-01573-9
|
FUJITA H. On the Blowing Up of Solutions of the Cauchy Problem for ut=Δu+u1+α[J]. Journal of the Faculty of Science of the University of Toky, 1966, 13: 109-124.
|
HAYAKAWA K. On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations[J]. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 1973, 49(7): 503-505.
|
KOBAYASHI K, SIRAO T, TANAKA H. On the Growing Up Problem for Semilinear Heat Equations[J]. Journal of the Mathematical Society of Japan, 1977, 29(3): 407-424.
|
CAZENAVE T, DICKSTEIN F, WEISSLER F B. An Equation Whose Fujita Critical Exponent is Not Given by Scaling[J]. Nonlinear Analysis, 2008, 68(4): 862-874. doi: 10.1016/j.na.2006.11.042
|
KATO T. Blow-Up of Solutions of Some Nonlinear Hyperbolic Equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(4): 501-505. doi: 10.1002/cpa.3160330403
|
STRAUSS W A. Everywhere Defined Wave Operators. In: Nonlinear Evolution Equations[M]. New York: Academic Press, 1978.
|
GLASSEY R T. Existence in the Large for □u=F(u) in Two Space Dimensions[J]. Mathematische Zeitschrift, 1981, 178(2): 233-261. doi: 10.1007/BF01262042
|
ZHOU Y. Cauchy Problem for Semilinear Wave Equations in Four Space Dimensions with Small Initial Data[J]. Journal of Partial Differential Equations, 1995, 8(2): 135-144.
|
GEORGIEV V, LINDBLAD H, SOGGE C D. Weighted Strichartz Estimates and Global Existence for Semilinear Wave Equations[J]. American Journal of Mathematics, 1997, 119(6): 1291-1319. doi: 10.1353/ajm.1997.0038
|
SCHAEFFER J. The Equation utt-Δu=|u|p for the Critical Value of p[J]. Proceedings of the Royal Society of Edinburgh, 1985, 101(1-2): 31-44. doi: 10.1017/S0308210500026135
|
ZHOU Y. Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions[J]. Chinese Annals of Mathematics(Series B), 2007, 28(2): 205-212. doi: 10.1007/s11401-005-0205-x
|
JOHN F. Blow-Up of Solutions of Nonlinear Wave Equations in Three Space Dimensions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 28(1-3): 235-268.
|
GLASSEY R T. Finite-Time Blow-Up for Solutions of Nonlinear Wave Equations[J]. Mathematische Zeitschrift, 1981, 177(3): 323-340. doi: 10.1007/BF01162066
|
SAMKO S G, KILBAS A A, MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Yverdon: Gordon and Breach Science Publishers, 1987.
|
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. New York: Elsevier Science Inc, 2006.
|
CHEN W H, DAO T A. On the Cauchy Problem for Semilinear Regularity-Loss-Type σ-Evolution Models with Memory Term[J]. Nonlinear Analysis: Real World Applications, 2021, 59: 103265. doi: 10.1016/j.nonrwa.2020.103265
|