D'AVENIA P, SICILIANO G. Nonlinear Schrödinger Equation in the Bopp-Podolsky Electrodynamics: Solutions in the Electrostatic Case [J]. Journal of Differential Equations, 2019, 267(2): 1025-1065. doi: 10.1016/j.jde.2019.02.001
SICILIANO G, SILVA K. The Fibering Method Approach for a Non-Linear Schrödinger Equation Coupled with the Electromagnetic Field [J]. Publicacions Matemàtiques, 2020, 64: 373-390. doi: 10.5565/PUBLMAT6422001
LI L, PUCCI P, TANG X H. Ground State Solutions for the Nonlinear Schrödinger-Bopp-Podolsky System with Critical Sobolev Exponent [J]. Advanced Nonlinear Studies, 2020, 20(3): 511-538. doi: 10.1515/ans-2020-2097
ZHU Y T, CHEN C F, CHEN J H. The Schrödinger-Bopp-Podolsky Equation under the Effect of Nonlinearities [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44(2): 953-980. doi: 10.1007/s40840-020-00994-9
CHEN S T, TANG X H. On the Critical Schrödinger-Bopp-Podolsky System with General Nonlinearities [J]. Nonlinear Analysis, 2020, 195: 111734. doi: 10.1016/j.na.2019.111734
YANG J, CHEN H B, LIU S L. The Existence of Nontrivial Solution of a Class of Schrödinger-Bopp-Podolsky System with Critical Growth [J]. Boundary Value Problems, 2020, 2020: 144. doi: 10.1186/s13661-020-01442-0
CERAMI G, VAIRA G. Positive Solutions for some Non-Autonomous Schrödinger-Poisson Systems [J]. Journal of Differential Equations, 2010, 248(3): 521-543. doi: 10.1016/j.jde.2009.06.017
VAIRA G. Ground States for Schrödinger-Poisson Type Systems [J]. Ricerche Di Matematica, 2011, 60(2): 263-297. doi: 10.1007/s11587-011-0109-x
王德菊, 唐春雷, 吴行平. 一类区域分数阶Schrödinger方程的基态解[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 21-26.
毕文静, 唐春雷, 丁凌. 一类耦合非线性Schrödinger-KdV系统基态解的存在性[J]. 西南师范大学学报(自然科学版), 2021, 46(2): 37-42.
陈卫, 唐春雷. 一类超线性分数阶Schrödinger方程解的多重性[J]. 西南师范大学学报(自然科学版), 2019, 44(4): 26-30.
WILLEM M. Minimax Theorems[M]. Boston: Birkhäuser, 1996.
BADIALE M, SERRA E. Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach[M]. Boston: Birkhäuser, 2010.