WANG Y, XING M, CAO Q, et al. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies [J]. Marine Drugs, 2019, 17(3): 183-200. doi: 10.3390/md17030183
YUAN Y, MACQUARRIE D. Microwave Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Ascophyllum Nodosum and Its Antioxidant Activity [J]. Carbohydrate Polymers, 2015, 129: 101-107. doi: 10.1016/j.carbpol.2015.04.057
XIAO M S, REN X M, YU Y, et al. Fucose-Containing Bacterial Exopolysaccharides: Sources, Biological Activities, and Food Applications [J]. Food Chemistry: X, 2022, 13: 100233-1-100233-17. doi: 10.1016/j.fochx.2022.100233
WANG Z, XIE J, SHEN M, et al. Sulfated Modification of Polysaccharides: Synthesis, Characterization and Bioactivities [J]. Trends in Food Science, 2018, 74: 147-157. doi: 10.1016/j.tifs.2018.02.010
XU Y, GAO Y, LIU F, et al. Sulfated Modification of the Polysaccharides from Blackcurrant and Their Antioxidant and α-Amylase Inhibitory Activities [J]. International Journal of Biological Macromolecules, 2018, 109: 1344-1354. doi: 10.1016/j.ijbiomac.2017.11.164
LIU Y, TANG Q, DUAN X, et al. Antioxidant and Anticoagulant Activities of Mycelia Polysaccharides from Catathelasma ventricosum After Sulfated Modification [J]. Industrial Crops Products, 2018, 112: 53-60. doi: 10.1016/j.indcrop.2017.10.064
ZHANG Z, LIU Z, TAO X, et al. Characterization and Sulfated Modification of an Exopolysaccharide from Lactobacillus plantarum ZDY2013 and Its Biological Activities [J]. Carbohydrate Polymers, 2016, 153: 25-33. doi: 10.1016/j.carbpol.2016.07.084
赵行, 韩定强, 邹祥, 等. 基于CFD-PBM的50L盐藻多糖发酵罐两相流模拟[J]. 西南师范大学学报(自然科学版), 2021, 46(4): 114-121.
LI S S, XIA H Q, XIE A Q, et al. Structure of a Fucose-Rich Polysaccharide Derived from EPS Produced by Kosakonia sp. CCTCC M2018092 and Its Application in Antibacterial Film [J]. International Journal of Biological Macromolecules, 2020, 159: 295-303.
JIN M, LU Z, HUANG M, et al. Sulfated Modification and Antioxidant Activity of Exopolysaccahrides Produced by Enterobacter cloacae Z0206 [J]. International Journal of Biological Macromolecules, 2011, 48(4): 607-612. doi: 10.1016/j.ijbiomac.2011.01.023
AN Q, YE X, HAN Y, et al. Structure Analysis of Polysaccharides Purified from Cyclocarya paliurus with DEAE-Cellulose and Its Antioxidant Activity in RAW264.7 Cells [J]. International Journal of Biological Macromolecules, 2020, 157: 604-615. doi: 10.1016/j.ijbiomac.2019.11.212
CHEN L, HUANG G. Antioxidant Activities of Phosphorylated Pumpkin Polysaccharide [J]. International Journal of Biological Macromolecules, 2019, 125: 256-261. doi: 10.1016/j.ijbiomac.2018.12.069
LIN C, WANG C, CHANG S, et al. Antioxidative Activity of Polysaccharide Fractions Isolated from Lycium Barbarum Linnaeus [J]. International Journal of Biological Macromolecules, 2009, 45(2): 146-151. doi: 10.1016/j.ijbiomac.2009.04.014
TANG J, DIAO P, SHU X H, et al. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: in Vitro Assessment and a Theoretical Model [J]. BioMed Research International, 2019, 2019: 7039802-1-7039802-8.
LI Q, QIU Z, WANG Y, et al. Tea Polyphenols Alleviate Hydrogen Peroxide-Induced Oxidative Stress Damage Through the Mst/Nrf2 Axis and the Keap1/Nrf2/HO-1 Pathway in Murine RAW264.7 cells [J]. Experimental Therapeutic Medicine, 2021, 22(6): 1-10.
邹灵秀, 陈谌, 杨小玲, 等. 白藜芦醇对兔成纤维细胞氧化应激损伤的保护作用研究[J]. 西南大学学报(自然科学版), 2020, 42(5): 51-56.
ZHANG Y, LIU P H, WANG C Y, et al. Homogalacturonan from Squash: Characterization and Tau-Binding Pattern of a Sulfated Derivative [J]. Carbohydrate Polymers, 2022, 285: 119250-1-119250-20. doi: 10.1016/j.carbpol.2022.119250
MACIEL J, CHAVES L, SOUZA B, et al. Structural Characterization of Cold Extracted Fraction of Soluble Sulfated Polysaccharide from Red Seaweed Gracilaria birdiae [J]. Carbohydrate Polymers, 2008, 71(4): 559-565. doi: 10.1016/j.carbpol.2007.06.026
CIMINO P, BIFULCO G, CASAPULLO A, et al. Isolation and NMR Characterization of Rosacelose, a Novel Sulfated Polysaccharide from the Sponge Mixylla rosacea [J]. Carbohydrate Research, 2001, 334(1): 39-47. doi: 10.1016/S0008-6215(01)00141-0
WANG J L, GUO H, ZHANG J, et al. Sulfated Modification, Characterization and Structure-Antioxidant Relationships of Artemisia sphaerocephala Polysaccharides [J]. Carbohydrate Polymers, 2010, 81(4): 897-905. doi: 10.1016/j.carbpol.2010.04.002
CHEN R, LIU Z, ZHAO J, et al. Antioxidant and Immunobiological Activity of Water-Soluble Polysaccharide Fractions Purified from Acanthopanax senticosu [J]. Food Chemistry, 2011, 127(2): 434-440. doi: 10.1016/j.foodchem.2010.12.143
WANG Z J, XIE J H, KAN L J, et al. Sulfated Polysaccharides from Cyclocarya paliurus Reduce H2O2-Induced Oxidative Stress in RAW264. 7 cells [J]. International Journal of Biological Macromolecules, 2015, 80: 410-417. doi: 10.1016/j.ijbiomac.2015.06.031
ALBAN S, SCHAUERTE A, FRANZ G. Synthesis and Structure-Activity Relationships of New Pullulan Sulfates [J]. Carbohydrate Polymers, 2002, 47(3): 267-276. doi: 10.1016/S0144-8617(01)00178-3
HUANG L X, HUANG M, SHEN M Y, et al. Sulfated Modification Enhanced the Antioxidant Activity of Mesona Chinensis Benth Polysaccharide and Its Protective Effect on Cellular Oxidative Stress [J]. International Journal of Biological Macromolecules, 2019, 136: 1000-1006. doi: 10.1016/j.ijbiomac.2019.06.199
WANG J Q, HU S Z, NIE S P, et al. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides [J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 5692852-1-5692852-13.