NYQUIST H. Certain Topics in Telegraph Transmission Theory [J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644. doi: 10.1109/T-AIEE.1928.5055024
|
SHANNON C E. Communication in the Presence of Noise [J]. Proceedings of the IRE, 1949, 37(1): 10-21.
|
李树涛, 魏丹. 压缩传感综述[J]. 自动化学报, 2009, 35(11): 1369-1377.
|
HE S Y, WANG Y, WANG J J, et al. Block-Sparse Compressed Sensing with Partially Known Signal Support via Non-Convex Minimisation [J]. IET Signal Processing, 2016, 10(7): 717-723. doi: 10.1049/iet-spr.2015.0425
|
刘春燕, 李川, 齐静. 基于扰动BOMP算法的块稀疏信号重构[J]. 西南师范大学学报(自然科学版), 2020, 45(7): 144-149.
|
王文东. 块压缩感知的L2/Lq(0 < q≤1)极小化算法研究[D]. 重庆: 西南大学, 2014.
|
王文东, 王尧, 王建军. 一类光滑加权块l1算法的收敛性分析与数值仿真实验[J]. 西南大学学报(自然科学版), 2014, 36(5): 72-77.
|
AHMED N, NATARAJAN T, RAO K R. Discrete Cosine Transform [J]. IEEE Transactions on Computers, 1974, C-23(1): 90-93. doi: 10.1109/T-C.1974.223784
|
ALMEIDA L B. The Fractional Fourier Transform and Time-Frequency Representations [J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368
|
SHENSA M J. The Discrete Wavelet Transform: Wedding the a Trous and Mallat Algorithms [J]. IEEE Transactions on Signal Processing, 1992, 40(10): 2464-2482. doi: 10.1109/78.157290
|
CANDÈS E J, et al. The Restricted Isometry Property and Its Implications for Compressed Sensing [J]. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592.
|
RASKUTTI G, WAINWRIGHT M, YU B. Restricted Eigenvalue Properties for Correlated Gaussian Designs [J]. J Mach Learn Res, 2010, 11: 2241-2259.
|
BORA A, JALAL A, PRICE E, et al. Compressed Sensing Using Generative Models[C]//9th International Conference on Machine Learning. New York: ACM Press, 2017: 537-546.
|
DHAR M, GROVER A, ERMON S. Modeling Sparse Deviations for Compressed Sensing Using Generative Models[EB/OL]. (2018-05-16)[2021-11-05]. https://arxiv.org/abs/1807.01442.
|
YANG Y X, WANG H L, QIU H Q, et al. Non-Convex Sparse Deviation Modeling via Generative Models[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing. New Yrok: IEEE Press, 2345-2349.
|
黄建文. l1极小化框架下高维数据重构理论与算法研究[D]. 重庆: 西南大学, 2019.
|