GINZBURG V L, LANDAU L D. On the Theory of Superconductivity[M]//On Superconductivity and Superfluidity. Berlin Heidelberg: Springer, 2009: 113-137.
NEWELL A, WHITEHEAD J. Finite Bandwidth, Finite Amplitude Convection[J]. Journal of Fluid Mechanics, 1969, 38: 279-303. doi: 10.1017/S0022112069000176
HUBER G, ALSTRØM P. Universal Decay of Vortex Density in Two Dimensions[J]. Physica A: Statistical Mechanics and Its Applications, 1993, 195(3-4): 448-456. doi: 10.1016/0378-4371(93)90169-5
ODASSO C. Ergodicity for the Stochastic Complex Ginzburg-Landau Equations[J]. Annales De l'Institut Henri Poincare (B) Probability and Statistics, 2006, 42(4): 417-454. doi: 10.1016/j.anihpb.2005.06.002
NERSESYAN V. Polynomial Mixing for the Complex Ginzburg-Landau Equation Perturbed by a Random Force at Random Times[J]. Journal of Evolution Equations, 2008, 8(1): 1-29. doi: 10.1007/s00028-007-0314-y
PENG X H, HUANG J H, ZHANG R R. Ergodicity and Exponential Mixing of the Real Ginzburg-Landau Equation with a Degenerate Noise[J]. Journal of Differential Equations, 2020, 269(4): 3686-3720. doi: 10.1016/j.jde.2020.03.013
SHEN T L, HUANG J H. Ergodicity of the Stochastic Coupled Fractional Ginzburg-Landau Equations Driven by Stable Noise[J]. Discrete and Continuous Dynamical Systems-B, 2017, 22(2): 605-625. doi: 10.3934/dcdsb.2017029
ZHENG Y, HUANG J H. Exponential Convergence for the 3D Stochastic Cubic Ginzburg-Landau Equation with Degenerate Noise[J]. Discrete and Continuous Dynamical Systems-B, 2019, 24(10): 5621-5632.
CHUESHOV I, KUKSIN S. Stochastic 3D Navier-Stokes Equations in a Thin Domain and Its α -Approximation[J]. Physica D: Nonlinear Phenomena, 2008, 237(10-12): 1352-1367. doi: 10.1016/j.physd.2008.03.012
KUKSIN S, SHIRIKYAN A. Randomly Forced CGL Equation: Stationary Measures and the Inviscid Limit[J]. Journal of Physics A: Mathematical and General, 2004, 37(12): 3805-3822. doi: 10.1088/0305-4470/37/12/006
KUKSIN S, SHIRIKYAN A. Mathematics of Two-Dimensional Turbulence[M]. Cambridge: Cambridge University Press, 2012.
BARTON-SMITH M. Invariant Measure for the Stochastic Ginzburg Landau Equation[J]. Nonlinear Differential Equations and Applications NoDEA, 2004, 11(1): 29-52. doi: 10.1007/s00030-003-1040-y
BOURGAIN J. Global Solutions of Nonlinear Schrödinger Equations[M]. Rhode Island: American Mathematical Society, 1999.
EVANS L C. An Introduction to Stochastic Differential Equations[M]. Rhode Island: American Mathematical Society, 2012.
DA PRATO G, ZABCZYK J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge: Cambridge University Press, 1996.