KERMACK W O, MCKENDRICK A G. A Contribution to the Mathematical Theory of Epidemics [J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700-721. doi: 10.1098/rspa.1927.0118
|
CAPASSO V, PAVERI-FONTANA S L. A Mathematical Model for the 1973 Cholera Epidemic in the European Mediterranean Region [J]. Revue d'Epidemiologie et De Sante Publique, 1979, 27(2): 121-132.
|
CODEÇO C T. Endemic and Epidemic Dynamics of Cholera: The Role of the Aquatic Reservoir [J]. BMC Infectious Diseases, 2001, 1: 1. doi: 10.1186/1471-2334-1-1
|
NNEAMAKA J E, HOUENAFA A T, EDWIN M. Modeling and Analysis of Cholera Dynamics with Vaccination[J]. American Journal of Applied Mathematics and Statistics, 2018, 7(1): 1-8.
|
WANG J L. Analysis of a Reaction-Diffusion Cholera Epidemic Model in a Spatially Heterogeneous Environment [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80: 104951. doi: 10.1016/j.cnsns.2019.104951
|
MUKANDAVIRE Z, LIAO S, WANG J, et al. Estimating the Reproductive Numbers for the 2008-2009 Cholera Outbreaks in Zimbabwe [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21): 8767-8772. doi: 10.1073/pnas.1019712108
|
HARTLEY D M, MORRIS J G, SMITH D L. Hyperinfectivity: a Critical Element in the Ability of V. Cholerae to Cause Epidemics? [J]. PLoS Medicine, 2006, 3(1): 63-69. doi: 10.1371/journal.pmed.0030063
|
SHUAI Z S. Global Dynamics of Cholera Models with Differential Infectivity [J]. Mathematical Biosciences, 2011, 234(2): 118-126. doi: 10.1016/j.mbs.2011.09.003
|
WEI H M, LI X Z, MARTCHEVA M. An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay [J]. Journal of Mathematical Analysis and Applications, 2008, 342(2): 895-908. doi: 10.1016/j.jmaa.2007.12.058
|
MISRA A K. A Mathematical Model for the Control of Carrier-Dependent Infectious Diseases with Direct Transmission and Time Delay [J]. Chaos, Solitons & Fractals, 2013, 57: 41-53.
|
ZHOU X Y, SHI X Y, CUI J A, et al. Dynamic Behavior of a Delay Cholera Model with Constant Infectious Period [J]. Journal of Applied Analysis & Computation, 2020, 10(2): 598-623.
|
WANG Y, WEI J. Global Dynamics of a Cholera Model with Time Delay [J]. International Journal of Biomathematics, 2013, 6(1): 143-160.
|
LIAO S, YANG W M. Cholera Model Incorporating Media Coverage with Multiple Delays [J]. Mathematical Methods in the Applied Sciences, 2019, 42(2): 419-439. doi: 10.1002/mma.5175
|
WANG J, MODNAK C. Modeling Cholera Dynamics with Controls[J]. Canadian Applied Mathematics Quarterly, 2011, 19(3): 255-273.
|
LASALLE J P. The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
|