邹沛清, 陈守全. 基于线性和条件下的失真风险测度尾部渐近性质[J]. 西南大学学报(自然科学版), 2019, 41(1): 72-77.
ZOUBIR B B K, ZOUBIR B B K. Robust Estimator of Distortion Risk Premiums for Heavy-Tailed Losses [J]. Afrika Statistika, 2016, 11(1): 869-882. doi: 10.16929/as/2016.869.80
EL METHNI J, STUPFLER G. Extreme Versions of Wang Risk Measures and Their Estimation for Heavy-Tailed Distributions [J]. Statistica Sinica, 2017, 27(2): 907-930.
WANG S. Premium Calculation by Transforming the Layer Premium Density [J]. ASTIN Bulletin, 1996, 26(1): 71-92. doi: 10.2143/AST.26.1.563234
ZHU L, LI H J. Tail Distortion Risk and Its Asymptotic Analysis [J]. Insurance: Mathematics and Economics, 2012, 51(1): 115-121. doi: 10.1016/j.insmatheco.2012.03.010
DE HAAN L, FERREIRA A. Extreme Value Theory [M]. New York: Springer New York, 2006.
RESNICK S I. Point Processes [M]//Extreme Values, Regular Variation and Point Processes. New York: Springer, 1987: 123-161.
DHAENE J, KUKUSH A, LINDERS D, et al. Remarks on Quantiles and Distortion Risk Measures [J]. European Actuarial Journal, 2012, 2(2): 319-328. doi: 10.1007/s13385-012-0058-0
DEME E H, ALLAYA M M, DEME S, et al. Estimation of Risk Measures from Heavy Tailed Distributions [J]. Far East Journal of Theoretical Statistics, 2021, 62(1): 35-80. doi: 10.17654/TS062010035
YIN C C, ZHU D. New Class of Distortion Risk Measures and Their Tail Asymptotics with Emphasis on VaR [J]. Journal of Financial Risk Management, 2018, 7(1): 12-38. doi: 10.4236/jfrm.2018.71002
温利民, 李俊雪, 王正武, 等. 在帕累托模型中风险度量的统计分析[J]. 江西师范大学学报(自然科学版), 2021, 45(2): 211-216.
贾佳. 失真风险度量[D]. 合肥: 中国科学技术大学, 2009.
彭作祥. 一类Hill型估计量的收敛性[J]. 西南师范大学学报(自然科学版), 1998, 23(2): 133-137.
伍度志, 胡爱平, 彭作祥. 一类位置不变的Hill型估计量的渐近性质[J]. 四川大学学报(自然科学版), 2009, 46(3): 553-555. doi: 10.3969/j.issn.0490-6756.2009.03-007
张绿云, 陈守全. 一类重尾极值指数估计[J]. 西南大学学报(自然科学版), 2021, 43(3): 89-94.
刘洋, 彭作祥. 重尾指数估计量及其伪估计量的渐近关系[J]. 西南师范大学学报(自然科学版), 2022, 47(7): 70-76.