LI Y, SHANG J H, ZHANG C, et al. The Role of Freshwater Eutrophication in Greenhouse Gas Emissions: a Review[J]. Science of The Total Environment, 2021, 768: 144582. doi: 10.1016/j.scitotenv.2020.144582
|
BHAGOWATI B, AHAMAD K U. A Review on Lake Eutrophication Dynamics and Recent Developments in Lake Modeling[J]. Ecohydrology & Hydrobiology, 2019, 19(1): 155-166.
|
PALAGAMA D S W, BALIU-RODRIGUEE O, SNYOER B K, et al. Identificationand Quantification of Microcystins in Western Lake Erie During 2016 and 2017 Harmful Algal Blooms[J]. Journal of Great Lakes Research, 2020, 46(2): 289-301. doi: 10.1016/j.jglr.2020.01.002
|
秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243.
|
谭啸, 刘倩倩, 段志鹏, 等. 太湖夏季水下光谱及色光对微囊藻群体的影响[J]. 中国环境科学, 2017, 37(11): 4277-4283. doi: 10.3969/j.issn.1000-6923.2017.11.033
|
李衍庆, 黄廷林, 张海涵, 等. 水源水库藻类功能群落演替特征及水质评价[J]. 环境科学, 2020, 41(5): 2158-2165.
|
THI N, HUMAN J, SONLMEIJER B P. Simulationof Three-Dimensional Phytoplankton Dynamics: Competition in Light-Limited Environments[J]. Journal of Computational and Applied Mathematics, 2005, 174(1): 57-77. doi: 10.1016/j.cam.2004.03.023
|
李亚军, 张海涛, 肖晶, 等. 筑坝河流水动力条件对浮游植物动态变化的影响[J]. 地球与环境, 2019, 47(6): 857-863.
|
HUANG J, XU C C, RIDOUTT B G, et al. Nitrogen and Phosphorus Losses and Eutrophication Potential Associated with Fertilizer Application to Cropland in China[J]. Journal of Cleaner Production, 2017, 159: 171-179. doi: 10.1016/j.jclepro.2017.05.008
|
THINGSTAD T, KROM M, MANTOURA R, et al. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean[J]. Science, 2005, 309(5737): 1068-1071. doi: 10.1126/science.1112632
|
STEINMAN A, ABDIMALIK M, OGDAHL M E, et al. Understanding Planktonic vs. Benthic Algal Response to Manipulation of Nutrients and Light in a Eutrophic Lake[J]. Lake and Reservoir Management, 2016, 32(4): 402-409. doi: 10.1080/10402381.2016.1235065
|
SCHINDLER, D W. Eutrophication and Recovery in Experimental Lakes: Implications for Lake Management[J]. Science, 1974, 184(4139): 897-899. doi: 10.1126/science.184.4139.897
|
HOWARTH R W, MARINO R. Nitrogen as The Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades[J]. Limnology and Oceanography, 2006, 51(1): 364-376.
|
SMITH V H. Low Nitrogento Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton[J]. Science, 1983, 221(4611): 669-671. doi: 10.1126/science.221.4611.669
|
邓开开, 李奕璇, 方芳, 等. 营养盐对藻类生长影响的原位实验研究[J]. 土木与环境工程学报(中英文), 2021, 43(4): 162-175.
|
吴雪峰, 程曦, 李小平. 淀山湖浮游植物营养限制因子的研究[J]. 长江流域资源与环境, 2010, 19(3): 292-298.
|
SU X L, ZENG B, HUANG W J, et al. The Effect of Winter Impoundment of the Three Gorges Dam: the Degradation and Convergence of Pre-Upland Vegetation[J]. Ecological Engineering, 2013, 61: 456-459. doi: 10.1016/j.ecoleng.2013.10.009
|
HUANG W M, BI Y H, HU Z Y, et al. Spatio-Temporal Variations of GHG Emissions from Surface Water of Xiangxi River in Three Gorges Reservoir Region, China[J]. Ecological Engineering, 2015, 83: 28-32. doi: 10.1016/j.ecoleng.2015.04.088
|
施军琼, 张明, 杨燕君, 等. 基于高通量测序探讨大宁河不同水华期真核浮游生物群落组成[J]. 西南大学学报(自然科学版), 2020, 42(2): 1-7.
|
郑丙辉, 张佳磊, 王丽婧, 等. 大宁河水华敏感期浮游植物与环境因子关系[J]. 环境科学, 2011, 32(3): 641-648.
|
况琪军, 毕永红, 周广杰, 等. 三峡水库蓄水前后浮游植物调查及水环境初步分析[J]. 水生生物学报, 2005, 29(4): 353-358.
|
MAO Y F, LIU Y, LI H, et al. Distinct Responses of Planktonic and Sedimentary Bacterial Communities to Anthropogenic Activities: Case Study of a Tributary of the Three Gorges Reservoir, China[J]. Science of The Total Environment, 2019, 682: 324-332.
|
刘步云. 基于EFDC模型的御临河回水区水动力数值模拟[D], 重庆: 重庆大学, 2015.
|
李琨, 徐强, 陈俊宇, 等. 生态调节坝对御临河水动力水质影响的模拟研究[J]. 水资源与水工程学报, 2020, 31(3): 15-23.
|
HAI X, QIN B, ZHU G W, et al. Determining Critical Nutrient Thresholds Needed to Control Harmful Cyanobacterial Blooms in Eutrophic Lake Taihu, China[J]. Environmental Science & Technology, 2015, 49(2): 1051-1059.
|
HAI X, PAERL H W, QIN B, et al. Nitrogen and Phosphorus Inputs Control Phytoplankton Growth in Eutrophic Lake Taihu, China[J]. Limnology and Oceanography, 2010, 55(1): 420-432.
|
岳冬梅. 太湖水华蓝藻原位生长及对氮磷营养限制的响应[D]. 南京: 南京大学, 2014.
|
魏复盛. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
HE Y X, MA J R, JOSEPH M, et al. Potassium Regulates the Growth and Toxin Biosynthesis of Microcystis Aeruginosa[J]. Environmental Pollution, 2020, 267: 115576.
|
SHUKLA B, RAI L C. Potassium-Induced Inhibition of Photosynthesis and Associated Electron Transport Chain of Microcystis: Implication for Controlling Cyanobacterial Blooms[J]. Harmful Algae, 2006, 5(2): 184-191.
|
李付宽, 郑剑锋, 贾泽宇, 等. 海河干流天津段氮磷对藻类生长的影响及动力学分析[J]. 环境工程学报, 2017, 11(2): 959-964.
|
许慧萍, 杨桂军, 周健, 等. 氮、磷质量浓度对太湖水华微囊藻(Microcystis flos-aquae)群体生长的影响[J]. 湖泊科学, 2014, 26(2): 213-220.
|
陈纯, 李思嘉, 肖利娟, 等. 营养盐加富和鱼类添加对浮游植物群落演替和多样性的影响[J]. 生态学报, 2013, 33(18): 5777-5784.
|
JAWORSKI G H M, TALLING J F, HEANEY S I. Potassium Dependence and Phytoplankton Ecology: an Experimental Study[J]. Freshwater Biology, 2003, 48(5): 833-840.
|
TALLING J F. Potassium-A Non-Limiting Nutrient in Fresh Waters[J]. Freshwater Reviews, 2010, 3(2): 97-104.
|
易文利, 王国栋, 刘选卫, 等. 氮磷比例对铜绿微囊藻生长及部分生化组成的影响[J]. 西北农林科技大学学报(自然科学版), 2005, 33(6): 151-154.
|
王梦梦, 张玮, 张军毅, 等. 营养盐添加对水华蓝藻——卵孢金孢藻生长和竞争影响的原位实验[J]. 环境科学, 2018, 39(6): 2698-2705.
|
许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响[J]. 湖泊科学, 2019, 31(5): 1239-1247.
|
王睿喆, 王沛芳, 任凌霄, 等. 营养盐输入对太湖水体中磷形态转化及藻类生长的影响[J]. 环境科学, 2015, 36(4): 1301-1308.
|
黄伟, 张钘, 罗晓佼, 等. 三峡库区支流的河-湖两态及其对沉积物不同形态磷含量的影响[J]. 环境科学研究, 2022, 43(3): 1356-1364.
|
XIANG R, WANG L J, LI H, et al. Water Quality Variation in Tributaries of the Three Gorges Reservoir from 2000 to 2015[J]. Water Research, 2021, 195: 116993.
|
康元昊, 施军琼, 杨燕君, 等. 三峡库区汝溪河浮游植物动态及其与水质的关系[J]. 水生态学杂志, 2018, 39(6): 23-29.
|
潘晓洁, 刘诚, 万成炎, 等. 三峡水库典型支流河口浮游植物群落与水环境相关性分析[J]. 水生态学杂志, 2016, 37(6): 7-13.
|
徐慧, 龙良红, 纪道斌, 等. 三峡水库神农溪2014年春季浮游藻类演替成因分析[J]. 微生物学报, 2017, 57(3): 375-387.
|
XIAO Y, LI Z, GOU J S, et al. Cyanobacteria in a Tributary Backwater Area in the Three Gorges Reservoir, China[J]. Inland Waters, 2016, 6(1): 77-88.
|