ZADEH L A. Fuzzy Sets and Information Granularity[J]. Advances in Fuzzy Set Theory and Applications, 1979, 11: 3-18.
PAWLAK Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Berlin: Springer Science and Business Media, 1991.
周涛, 陆惠玲, 任海玲, 等. 基于粗糙集的属性约简算法综述[J]. 电子学报, 2021, 49(7): 1439.
ZHU W H, ZHANG W, FU Y Q. An Incomplete Data Analysis Approach Using Rough Set Theory[C] //2004 International Conference on Intelligent Mechatronics and Automation, Proceedings. IEEE, 2004: 332-338.
BAI X L, ZHANG M C, WU Q T, et al. A Novel Data Filling Algorithm for Incomplete Information System Based on Valued Limited Tolerance Relation[J]. International Journal of Database Theory and Application, 2015, 8(6): 149-164. doi: 10.14257/ijdta.2015.8.6.14
STEFANOWSKI J, TSOUKIAS A. On the Extension of Rough Sets under Incomplete Information[C] //International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing. Springer, Berlin, Heidelberg, 1999: 73-81.
KRYSZKIEWICZ M. Rough Set Approach to Incomplete Information Systems[J]. Information Sciences, 1998, 112: 39-49. doi: 10.1016/S0020-0255(98)10019-1
GRZYMALA-BUSSE J W. Rough Set Strategies to Data with Missing Attribute Values[M] //Foundations and Novel Approaches in Data Mining. Springer, Berlin, Heidelberg, 2006: 197-212.
CLARK P G, GRZYMALA-BUSSE J W, RZASA W. Consistency of Incomplete Data[J]. Information Sciences, 2015, 322: 197-222. doi: 10.1016/j.ins.2015.06.011
CLARK P G, GAO C, GRZYMALA-BUSSE J W, et al. Characteristic Sets and Generalized Maximal Consistent Blocks in Mining Incomplete Data[J]. Information Sciences, 2018, 453: 66-79. doi: 10.1016/j.ins.2018.04.025
CHEN Y X, ZHU P. Extending Characteristic Relations on An Incomplete Data Set by the Three-way Decision Theory[J]. International Journal of Approximate Reasoning, 2020, 119: 108-121. doi: 10.1016/j.ijar.2019.12.011
QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: A Multi-Granulation Rough Set[J]. Information Sciences, 2010, 180: 949-970. doi: 10.1016/j.ins.2009.11.023
ZHU P F, HU Q H, ZUO W M, et al. Multi-Granularity Distance Metric Learning via Neighborhood Granule Margin Maximiza-tion[J]. Information Sciences, 2014, 282: 321-331. doi: 10.1016/j.ins.2014.06.017
WU W Z, LEUNG Y. Theory and Applications of Granular Labelled Partitions in Multi-Scale Decision Tables[J]. Information Sciences, 2011, 181: 3878-3897. doi: 10.1016/j.ins.2011.04.047
WU W Z, LEUNG Y. Optimal Scale Selection for Multi-Scale Decision Tables[J]. International Journal of Approximate Reasoning, 2013, 54(8): 1107-1129. doi: 10.1016/j.ijar.2013.03.017
GU S M, WU W Z. On Knowledge Acquisition in Multi-Scale Decision Systems[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(5): 477-486. doi: 10.1007/s13042-012-0115-7
SHE Y H, LI J H, YANG H L. A Local Approach to Rule Induction in Multi-scale Decision Tables[J]. Knowledge-Based Systems, 2015, 89: 398-410. doi: 10.1016/j.knosys.2015.07.020
CHEN D X, LI J J, LIN R D, et al. Information Entropy and Optimal Scale Combination in Multi-Scale Covering Decision Systems[J]. IEEE Access, 2020, 8: 182908-182917. doi: 10.1109/ACCESS.2020.3029157
郑嘉文, 吴伟志, 包菡, 等. 基于熵的多尺度决策系统的最优尺度选择[J]. 南京大学学报(自然科学版), 2021, 57(1): 130-140.
ZHANG X Q, ZHANG Q H, CHENG Y L, et al. Optimal Scale Selection by Integrating Uncertainty and Cost-Sensitive Learning in Multi-Scale Decision Tables[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(1): 1-20. doi: 10.1007/s13042-019-00928-3
SHE Y H, ZHAO Z J, HU M T, et al. On Selection of Optimal Cuts in Complete Multi-Scale Decision Tables[J]. Artificial Intelligence Review, 2021(11): 1-24.
SHE Y H, QIAN Z H, HE X L, et al. On Generalization Reducts in Multi-Scale Decision Tables[J]. Information Sciences, 2021, 555: 104-124. doi: 10.1016/j.ins.2020.12.045
WANG H R, LI W T, ZHAN T, et al. Multi-Granulation-Based Optimal Scale Selection in Multi-scale Information Systems[J]. Computers and Electrical Engineering, 2021, 92: 107107. doi: 10.1016/j.compeleceng.2021.107107
LI F, HU B Q. A New Approach of Optimal Scale Selection to Multi-Scale Decision Tables[J]. Information Sciences, 2017, 381: 193-208. doi: 10.1016/j.ins.2016.11.016
LI F, HU B Q, WANG J. Stepwise Optimal Scale Selection for Multi-scale Decision Tables via Attribute Significance[J]. Knowledge-Based Systems, 2017, 129: 4-16. doi: 10.1016/j.knosys.2017.04.005
WU W Z, LEUNG Y. A Comparison Study of Optimal Scale Combination Selection in Generalized Multi-Scale Decision Tables[J]. International Journal of Machine Learning and Cybernetics, 2019, 11(12): 961-972.
牛东苒, 吴伟志, 李同军. 广义多尺度决策系统中基于可变精度的最优尺度组合[J]. 模式识别与人工智能, 2019, 32(11): 965-974.
吴伟志, 庄宇斌, 谭安辉, 等. 不协调广义多尺度决策系统的尺度组合[J]. 模式识别与人工智能, 2018, 31(6): 485-494.
HAO C, LI J H, FAN M, et al. Optimal Scale Selection in Dynamic Multi-Scale Decision Tables Based on Sequential Three-Way Decisions[J]. Information Sciences, 2017, 415: 213-232.
WU W Z, QIAN Y H, LI T J, et al. On Rule Acquisition in Incomplete Multi-Scale Decision Tables[J]. Information Sciences, 2017, 378: 282-302.
吴伟志, 陈颖, 徐优红, 等. 协调的不完备多粒度标记决策系统的最优粒度选择[J]. 模式识别与人工智能, 2016, 29(2): 108-115.
吴伟志, 杨丽, 谭安辉, 等. 广义不完备多粒度标记决策系统的粒度选择[J]. 计算机研究与发展, 2018, 55(6): 1263-1272.
顾沈明, 顾金燕, 吴伟志, 等. 不完备多粒度决策系统的局部最优粒度选择[J]. 计算机研究与发展, 2017, 54(7): 1500-1509.
WANG GY, GUAN L H, WU W Z, et al. Data-Driven Valued Tolerance Relation Based on the Extended Rough Set[J]. Fundamenta Informaticae, 2014, 132(3): 349-363.