KHUSH G S. Green Revolution: The Way Forward[J]. Nature Reviews Genetics, 2001, 2(10): 815-822. doi: 10.1038/35093585
|
ZHANG J F, WU M, YU J W, et al. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium Hirsutum) and Gossypium Barbadense: Heterosis, Combining Ability and Genetic Effects[J]. PLoS One, 2016, 11(1): e0143646. doi: 10.1371/journal.pone.0143646
|
邹德堂, 韩政宏, 郑洪亮, 等. 利用CRISPR/Cas9技术创制香糯型粳稻种质[J]. 东北农业大学学报, 2022, 53(5): 1-7, 31.
|
TESTER M, LANGRIDGE P. Breeding Technologies to Increase Crop Production in a Changing World[J]. Science, 2010, 327(5967): 818-822. doi: 10.1126/science.1183700
|
ADHIKARI A, IBRAHIM A M H, RUDD J C, et al. Estimation of Heterosis and Combining Abilities of US Winter Wheat Germplasm for Hybrid Development in Texas[J]. Crop Science, 2020, 60(2): 788-803. doi: 10.1002/csc2.20020
|
THORWARTH P, PIEPHO H, ZHAO Y S, et al. Higher Grain Yield and Higher Grain Protein Deviation Underline the Potential of Hybrid Wheat for a Sustainable Agriculture[J]. Plant Breeding, 2018, 137: 326-337. doi: 10.1111/pbr.12588
|
KOEMEL J E, GUENZI A C, CARVER B F, et al. Hybrid and Pureline Hard Winter Wheat Yield and Stability[J]. Crop Science, 2004, 44(1): 107. doi: 10.2135/cropsci2004.1070
|
卢庆善. 农作物杂种优势[M]. 北京: 中国农业科技出版社, 2001.
|
王贝麟, 陈麒帆, 门文强, 等. 六倍体小黑麦株高分离的染色体构成分析[J]. 河南农业大学学报, 2021, 55(4): 631-638. doi: 10.16445/j.cnki.1000-2340.20210420.001
|
ZHAO Y S, LI Z, LIU G Z, et al. Genome-Based Establishment of a High-Yielding Heterotic Pattern for Hybrid Wheat Breeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15624-15629. doi: 10.1073/pnas.1514547112
|
BOEVEN P H G, LONGIN C F H, WVRSCHUM T. A Unified Framework for Hybrid Breeding and the Establishment of Heterotic Groups in Wheat[J]. Theoretical and Applied Genetics, 2016, 129(6): 1231-1245. doi: 10.1007/s00122-016-2699-x
|
WVRSCHUM T, LEISER W L, WEISSMANN S, et al. Genetic Architecture of Male Fertility Restoration of Triticum Timopheevii Cytoplasm and Fine-Mapping of the Major Restorer Locus Rf3 on Chromosome 1B[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2017, 130(6): 1253-1266. doi: 10.1007/s00122-017-2885-5
|
李文, 王永文. 小麦倒伏对产量因素的影响及其补救方法[J]. 安徽农学通报, 2011, 17(18): 33-33, 47. doi: 10.3969/j.issn.1007-7731.2011.18.020
|
张德新. 小麦倒伏相关性状的关联分析[D]. 合肥: 安徽农业大学, 2015.
|
MURTHYÂ B N, RAOÂ M V. Evolving Suitable Index for Lodging Resistance in Barley[J]. Indian Journal of Genetics and Plant Breeding, 1980, 40(1): 253-261.
|
WIERSMA D W, OPLINGER E S, GUY S O. Environment and Cultivar Effects on Winter Wheat Response to Ethephon Plant Growth Regulator 1[J]. Agronomy Journal, 1986, 78(5): 761-764. doi: 10.2134/agronj1986.00021962007800050002x
|
郭保宏, 宋春华, 贾继增. 我国小麦品种的 Rht1 、 Rht2 矮秆基因鉴定及分布研究[J]. 中国农业科学, 1997, 30(5): 56-60.
|
周晓变, 赵磊, 陈建辉, 等. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系[J]. 麦类作物学报, 2017, 37(8): 997-1007.
|
李杏普, 蒋春志, 刘洪岭. 不同矮秆基因对冬小麦农艺性状的影响[J]. 作物学报, 1998, 24(4): 475-479. doi: 10.3321/j.issn:0496-3490.1998.04.015
|
BEKTAS H, WAINES J G. Root and Shoot Traits in Parental, Early and Late Generation Green Revolution Wheats (Triticum SPP.) under Glasshouse Conditions[J]. Genetic Resources and Crop Evolution, 2018, 65(7): 2003-2012. doi: 10.1007/s10722-018-0673-y
|
王山荭, 孟凡华, 杨丽, 等. 矮秆基因对小麦不同农艺性状的影响[J]. 麦类作物学报, 2001, 21(4): 5-9. doi: 10.3969/j.issn.1009-1041.2001.04.002
|
RICHARDS R A. The Effect of Dwarfing Genes in Spring Wheat in Dry Environments. I. Agronomic Characteristics[J]. Australian Journal of Agricultural Research, 1992, 43(3): 517-527. doi: 10.1071/AR9920517
|
杨天章, 张晓科, 刘宏伟, 等. 矮秆小麦XN0004的矮秆基因 Rht21 的染色体臂定位[J]. 西北农林科技大学学报(自然科学版), 1993, 21(4): 13-17. doi: 10.3321/j.issn:1671-9387.1993.04.003
|
周文春, 赵寅槐, 邹明烈, 等. 小麦 Rht3 基因遗传效应的研究[J]. 江苏农业学报, 1993, 9(4): 1-6.
|
ELLIS M, SPIELMEYER W, GALE K, et al. "Perfect" Markers for the RHT-B1b and RHT-D1b Dwarfing Genes in Wheat[J]. Theoretical and Applied Genetics, 2002, 105(6/7): 1038-1042.
|
武晶. 小麦矮秆基因 Rht3 的克隆及功能研究[D]. 北京: 中国农业科学院, 2012.
|
ELLIS M H, REBETZKE G J, AZANZA F, et al. Molecular Mapping of Gibberellin-Responsive Dwarfing Genes in Bread Wheat[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2005, 111(3): 423-430. doi: 10.1007/s00122-005-2008-6
|
DAOURA B G. Genetic Effects of Dwarfing Gene Rht5 on Agronomic Traits in Common Wheat (Triticum aestivum L.) and QTL Analysis on Its Linked Traits[J]. Field Crops Research, 2014, 156: 22-29. doi: 10.1016/j.fcr.2013.10.007
|
CAO W G, SOMERS D J, FEDAK G. A Molecular Marker Closely Linked to the Region of RHT-D1c and Ms2 Genes in Common Wheat (Triticum aestivum)[J]. Genome, 2009, 52(1): 95-99. doi: 10.1139/G08-097
|
LI A X, YANG W L, GUO X L, et al. Isolation of a Gibberellin-Insensitive Dwarfing Gene, RHT-B1e , and Development of an Allele-Specific PCR Marker[J]. Molecular Breeding, 2012, 30(3): 1443-1451. doi: 10.1007/s11032-012-9730-y
|
VIKHE P, VENKATESAN S, CHAVAN A, et al. Mapping of Dwarfing Gene Rht14 in Durum Wheat and Its Effect on Seedling Vigor, Internode Length and Plant Height[J]. The Crop Journal, 2019, 7(2): 187-197. doi: 10.1016/j.cj.2018.11.004
|
BAZHENOV M S, DIVASHUK M G, AMAGAI Y, et al. Isolation of the Dwarfing Rht-B1p (Rht17) Gene from Wheat and the Development of an Allele-Specific PCR Marker[J]. Molecular Breeding, 2015, 35(11): 1-8.
|
张家敏. 四倍体小麦矮秆基因 Rht18 的克隆、表达及功能初步研究[D]. 南充: 西华师范大学, 2021.
|
PENG Z S, LI X, YANG Z J, et al. A New Reduced Height Gene Found in the Tetraploid Semi-Dwarf Wheat Landrace Aiganfanmai[J]. Genetics and Molecular Research: GMR, 2011, 10(4): 2349-2357. doi: 10.4238/2011.October.5.5
|
CHEN S L, GAO R H, WANG H Y, et al. Characterization of a Novel Reduced Height Gene (Rht23) Regulating Panicle Morphology and Plant Architecture in Bread Wheat[J]. Euphytica, 2015, 203(3): 583-594. doi: 10.1007/s10681-014-1275-1
|
田秀苓. 小麦矮秆基因 Rht24 图位克隆与功能解析[D]. 北京: 中国农业科学院, 2021.
|
曹彬, 王长春, 王可田, 等. 杂种小麦双亲株高差异对制种母本结实率的影响[J]. 陕西农业科学, 2000, 46(11): 1-3. doi: 10.3969/j.issn.0488-5368.2000.11.001
|
周芳菊, 陈桥生, 张道荣, 等. 杂交小麦主要产量性状优势及亲本选配分析[J]. 湖北农业科学, 2011, 50(15): 3046-3048. doi: 10.3969/j.issn.0439-8114.2011.15.007
|
宋喜悦, 马翎健, 胡银岗, 等. 杂交小麦混合制种新体系的初步研究[J]. 麦类作物学报, 2002, 22(4): 31-34. doi: 10.3969/j.issn.1009-1041.2002.04.008
|
DEVIRCES A P. Some Aspects of Cross-Pollination in Wheat (Triticum aestivum L.)[J]. Euphytica, 1974, 23: 601-622. doi: 10.1007/BF00022483
|
郭保宏, 宋春华, 贾继增. 我国46个小麦品种的矮秆基因分析[J]. 麦类作物学报, 1996, 16(5): 4-5.
|
杨松杰, 张晓科, 何中虎, 等. 用STS标记检测矮秆基因 Rht-B1b和Rht-D1b 在中国小麦中的分布[J]. 中国农业科学, 2006, 39(8): 1680-1688. doi: 10.3321/j.issn:0578-1752.2006.08.023
|
李怡鑫, 陈向东, 张雪宁, 等. 47份外引小麦种质中矮秆基因的检测及其降秆效应分析[J]. 麦类作物学报, 2021, 41(5): 561-568.
|
张胜全, 叶志杰, 任立平, 等. "十五"以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022(1): 38-43.
|
SCHWARZWÄLDER L, THORWARTH P, ZHAO Y S, et al. Hybrid Wheat: Quantitative Genetic Parameters and Heterosis for Quality and Rheological Traits as Well as Baking Volume[J]. Theoretical and Applied Genetics, 2022, 135(4): 1131-1141. doi: 10.1007/s00122-022-04039-6
|
LONGIN C F H, GOWDA M, MVHLEISEN J, et al. Hybrid Wheat: Quantitative Genetic Parameters and Consequences for the Design of Breeding Programs[J]. Theoretical and Applied Genetics, 2013, 126(11): 2791-2801. doi: 10.1007/s00122-013-2172-z
|
李姜玲, 杨澜, 阮仁武, 等. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. doi: 10.3864/j.issn.0578-1752.2021.23.006
|
李兴普, 维拉瑞, 拉加拉姆, 等. 不同小麦Rht基因品种农艺性状的相关[J]. 河北农业技术师范学院学报, 1994(2): 14-19.
|