MERRIS R. The Second Immanantal Polynomial and the Centroid of a Graph[J]. SIAM Journal on Algebraic Discrete Methods, 1986, 7(3): 484-503. doi: 10.1137/0607056
|
LIU X G, ZHANG Y P, LU P L. One Special Double Starlike Graph is Determined by Its Laplacian Spectrum[J]. Applied Mathematics Letters, 2009, 22(4): 435-438. doi: 10.1016/j.aml.2008.06.012
|
LU P L, LIU X G, YUAN Z T, et al. Spectral Characterizations of Sandglass Graphs[J]. Applied Mathematics Letters, 2009, 22(8): 1225-1230. doi: 10.1016/j.aml.2009.01.050
|
SHEN X L, HOU Y P, ZHANG Y P. Graph Zn and Some Graphs Related to Zn are Determined by Their Spectrum[J]. Linear Algebra and Its Applications, 2005, 404: 58-68. doi: 10.1016/j.laa.2005.01.036
|
WANG W, XU C X. Note the T-Shape Tree is Determined by Its Laplacian Spectrum[J]. Linear Algebra and Its Applications, 2006, 419(1): 78-81. doi: 10.1016/j.laa.2006.04.005
|
WANG J F, HUANG Q X, BELARDO F, et al. On the Spectral Characterizations of ∞-Graphs[J]. Discrete Mathematics, 2010, 310(13/14): 1845-1855.
|
LIU S Y. On the (Signless) Laplacian Permanental Polynomials of Graphs[J]. Graphs and Combinatorics, 2019, 35(3): 787-803. doi: 10.1007/s00373-019-02033-2
|
LIU X G, WU T Z. Graphs Determined by the (Signless) Laplacian Permanental Polynomials[J]. Linear and Multilinear Algebra, 2022, 70(18): 3599-3615. doi: 10.1080/03081087.2020.1849003
|
BANF S, VAN DAM E R, KOOLEN J H. Spectral Characterization of the Hamming Graphs[J]. Linear Algebra and Its Applications, 2008, 429: 2678-2686. doi: 10.1016/j.laa.2007.10.026
|
CVETKOVIĆ D, DOOB M, SACHS H. Spectra of Graphs: Theorey and Application[M]. New York: Academic Press, 1980.
|
VAN DAM E R, HAEMERS W H. Which Graphs are Determined by Their Spectrum?[J]. Linear Algebra and Its Applications, 2003, 373: 241-272. doi: 10.1016/S0024-3795(03)00483-X
|
DAM E R V, HAEMERS W H. Developments on Spectral Characterizations of Graphs[J]. Discrete Mathematics, 2009, 309(3): 576-586. doi: 10.1016/j.disc.2008.08.019
|
LIN H Q, LIU X G, XUE J. Graphs Determined by Their Aα-Spectra[J]. Discrete Mathematics, 2019, 342(2): 441-450. doi: 10.1016/j.disc.2018.10.006
|
MERRIS R, WATKINS W. Inequalities and Identities for Generalized Matrix Functions[J]. Linear Algebra and Its Applications, 1985, 64: 223-242. doi: 10.1016/0024-3795(85)90279-4
|
MERRIS R. Immanantal Invariants of Graphs[J]. Linear Algebra and Its Applications, 2005, 401: 67-75. doi: 10.1016/j.laa.2003.11.033
|
SHI Y T, DEMER M, LI X L, et al. Graph Polynomials[M]. Boca Raton: CRC Press, 2016.
|
WANG W. A Simple Arithmetic Criterion for Graphs Being Determined by Their Generalized Spectra[J]. Journal Combinatorial Theory(Series B), 2017, 122: 438-451. doi: 10.1016/j.jctb.2016.07.004
|
YU G H, QU H. The Coefficients of the Immanantal Polynomial[J]. Applied Mathematics and Computation, 2018, 339: 38-44. doi: 10.1016/j.amc.2018.06.057
|
MERRIS R. Almost All Trees are Co-Immanantal[J]. Linear Algebra and Its Applications, 1991, 150: 61-66. doi: 10.1016/0024-3795(91)90159-T
|
CÁMARA M, HAEMERS W H. Spectral Characterizations of Almost Complete Graphs[J]. Discrete Applied Mathematics, 2014, 176: 19-23. doi: 10.1016/j.dam.2013.08.002
|
ZHANG H P, WU T Z, LAI H J. Per-Spectral Characterizations of Some Edge-Deleted Subgraphs of a Complete Graph[J]. Linear and Multilinear Algebra, 2015, 63(2): 397-410. doi: 10.1080/03081087.2013.869592
|
BIGGS N. Algebraic Graph Theory[M]. Cambridge: Cambridge University Press, 1993.
|