HALMOS P R. A Hilbert Space Problem Book [M]. 2th ed. Berlin: Springer, 1982.
|
STAMPFLI J G. Extreme Points of the Numerical Range of a Hyponormal Operator[J]. Michigan Mathematical Journal, 1966, 13(1): 87-89.
|
GUSTAFSON K E, RAO D K M. Numerical Range[M]. Berlin: Springer, 1997.
|
LANGER H, TRETTER C. Spectral Decomposition of Some Nonselfadjoint Block Operator Matrices[J]. Journal of Operator Theory, 1998, 39(2): 339-359.
|
LANGER H, MARKUS A, MATSAEV V, et al. A New Concept for Block Operator Matrices: The Quadratic Numerical Range[J]. Linear Algebra and Its Applications, 2001, 330(1-3): 89-112. doi: 10.1016/S0024-3795(01)00230-0
|
GARNETT J. Bounded Analytic Functions[M]. New-York: Springer Science & Business Media, 2007.
|
丁宣浩, 黄雨浩, 桑元琦, 等. 亚正规对偶截断Toeplitz算子[J]. 西南大学学报(自然科学版), 2022, 44(6): 94-98.
|
BEURLING A. On Two Problems Concerning Linear Transformations in Hilbert Space[J]. Acta Mathematica, 1949, 81(1): 239-255.
|
SARASON D. Algebraic Properties of Truncated Toeplitz Operators[J]. Operators and Matrices, 2007, 1(4): 491-526.
|
DING X H, SANG Y Q. Dual Truncated Toeplitz Operators[J]. Journal of Mathematical Analysis and Applications, 2018, 461(1): 929-946. doi: 10.1016/j.jmaa.2017.12.032
|
BROWN A, HALMOS P. Algebraic Properties of Toeplitz Operators[J]. Journal Für Mathematik, 1964, 1964(213): 89-102.
|
KLEIN E M. The Numerical Range of a Toeplitz Operator[J]. Proceedings of the American Mathematical Society, 1972, 35(2): 101-103.
|
HOFFMAN K. Banach Space of Analytic Function[M]. Pretice Hall: Kenneth Hoffman, 1962.
|
丁宣浩, 梁焕超, 李永宁. 可交换的Toeplitz算子[J]. 西南师范大学学报(自然科学版), 2022, 47(2): 27-31.
|
DOUGLAS R G. Banach Algebra Techniques in Operator Theory[M]. New-York: Springer Science & Business Media, 2012.
|
李永宁, 梁焕超, 丁宣浩. 圆周上的小Hankel算子[J]. 西南大学学报(自然科学版), 2021, 43(6): 89-94.
|
LI Y N, SANG Y Q, DING X H. The Commutant and Invariant Subspaces for Dual Truncated Toeplitz Operators[J]. Banach Journal of Mathematical Analysis, 2021, 15(1): 224-250.
|
ZHU K H. Operator Theory in Function Spaces[M]. Providence, Rhode Island: American Mathematical Society, 2007.
|
THUKRAL J K. The Numerical Range of a Toeplitz Operator with Harmonic Symbol[J]. Journal of Operator Theory, 1995, 34(2): 213-216.
|
McDONALD G, SUNDBERG C. Toeplitz Operators on the Disc[J]. Indiana University Mathematics Journal, 1979, 28(4): 595-611.
|