TURNER E L, BRUESEWITZ D A, MOONEY R F, et al. Comparing Performance of Five Nutrient Phytoplankton Zooplankton (NPZ) Models in Coastal Lagoons[J]. Ecological Modelling, 2014, 277: 13-26. doi: 10.1016/j.ecolmodel.2014.01.007
WANG W, LIU S T, TIAN D D, et al. Permanence and Extinction of a Nonautonomous Impulsive Plankton Model with Help[J]. Mathematical Methods in the Applied Sciences, 2017, 40(18): 7175-7184. doi: 10.1002/mma.4521
ZHAO Q Y, LIU S T, NIU X L. Effect of Water Temperature on the Dynamic Behavior of Phytoplankton-Zooplankton Model[J]. Applied Mathematics and Computation, 2020, 378: 125211. doi: 10.1016/j.amc.2020.125211
MOSTEFAOUI I M, MOUSSAOUI A. On a Non-autonomous Reaction-Convection Diffusion Model to Study the Bacteria Distribution in a River[J]. 生物数学学报: 英文版, 2017, 10(6): 25.
MA L, GAO J P, LUO Y Q, et al. Existence of the Positive Steady States of a Reaction-Diffusion-Advection Competition Model[J]. Applied Mathematics Letters, 2021, 119: 107205. doi: 10.1016/j.aml.2021.107205
ZHU D D, REN J L. On a Reaction-Advection-Diffusion Equation with Robin and Free Boundary Conditions[J]. Applicable Analysis, 2020, 99(8): 1344-1358. doi: 10.1080/00036811.2018.1530761
HILKER F M, LEWIS M A. Predator-Prey Systems in Streams and Rivers[J]. Theoretical Ecology, 2010, 3(3): 175-193. doi: 10.1007/s12080-009-0062-4
VASILYEVA O, LUTSCHER F. How Flow Speed Alters Competitive Outcome in Advective Environments[J]. Bulletin of Mathematical Biology, 2012, 74(12): 2935-2958. doi: 10.1007/s11538-012-9792-3
ZHOU P, XIAO D M. Global Dynamics of a Classical Lotka-Volterra Competition-Diffusion-Advection System[J]. Journal of Functional Analysis, 2018, 275(2): 356-380. doi: 10.1016/j.jfa.2018.03.006
GUO G H, WU J H. The Effect of Mutual Interference between Predators on a Predator-Prey Model with Diffusion[J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 179-194. doi: 10.1016/j.jmaa.2011.11.044
NIE H, WANG B, WU J H. Invasion Analysis on a Predator-Prey System in Open Advective Environments[J]. Journal of Mathematical Biology, 2020, 81(6-7): 1429-1463. doi: 10.1007/s00285-020-01545-3
ABRAMS P A, GINZBURG L R. The Nature of Predation: Prey Dependent, Ratio Dependent or Neither?[J]. Trends in Ecology Evolution, 2000, 15(8): 337-341. doi: 10.1016/S0169-5347(00)01908-X
BARTUMEUS F, ALONSO D, CATALAN J. Self-Organized Spatial Structures in a Ratio-Dependent Predator-Prey Model[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 295(1-2): 53-57. doi: 10.1016/S0378-4371(01)00051-6
SHI H B, RUAN S G. Spatial, Temporal and Spatiotemporal Patterns of Diffusive Predator-Prey Models with Mutual Interference[J]. IMA Journal of Applied Mathematics, 2015, 80(5): 1534-1568. doi: 10.1093/imamat/hxv006
XIAO D M, LI W X, HAN M A. Dynamics in a Ratio-Dependent Predator-Prey Model with Predator Harvesting[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1): 14-29. doi: 10.1016/j.jmaa.2005.11.048
GHOTBI A R, BARARI A, GANJI D D. Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting Using Homotopy Perturbation Method[J]. Mathematical Problems in Engineering, 2008, 2008: 1-8.