袁道先, 蒋勇军, 沈立成. 现代岩溶学[M]. 北京: 科学出版社, 2016.
新华社. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22) [2022-05-07]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5): 1-12.
袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100.
吴泽燕, 章程, 蒋忠诚, 等. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
张日萍, 杨勋林, 鄢应燃, 等. 重庆羊子洞石笋记录的92.3~60.1 ka亚洲夏季风变化特征[J]. 西南大学学报(自然科学版), 2022, 44(7): 184-196.
任坤, 沈立成, 袁道先, 等. 2012-2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016, 41(8): 1424-1434.
CHEN D, MOLINA J A E, CLAPP C E, et al. Corn Root Influence on Automated Measurement of Soil Carbon Dioxide Concentrations[J]. Soil Science, 2005, 170(10): 779-787. doi: 10.1097/01.ss.0000190512.41298.fc
BALDINI J U L, BALDINI L M, MCDERMOTT F, et al. Carbon Dioxide Sources, Sinks, and Spatial Variability in Shallow Temperate Zone Caves: Evidence from Ballynamintra Cave, Ireland[J]. Journal of Cave and Karst Studies, 2006, 68(1): 4-11.
TRINH D, INSTITUTE V A E, TRINH Q, et al. First Assessment on the Air CO2 Dynamic in the Show Caves of Tropical Karst, Vietnam[J]. International Journal of Speleology, 2018, 47(1): 93-112. doi: 10.5038/1827-806X.47.1.2141
高扬, 于贵瑞. 流域生物地球化学循环与水文耦合过程及其调控机制[J]. 地理学报, 2018, 73(7): 1381-1393.
FAIMON J, ŠTELCL J, SAS D, et al. Anthropogenic CO2-Flux into Cave Atmosphere and Its Environmental Impact: a Case Study in the Císařská Cave (Moravian Karst, Czech Republic)[J]. Science of the Total Environment, 2006, 369(1-3): 231-245. doi: 10.1016/j.scitotenv.2006.04.006
LANG M, FAIMON J. A Show Cave Management: Anthropogenic CO2 in Atmosphere of Výpustek Cave (Moravian Karst, Czech Republic)[J]. Journal for Nature Conservation, 2017, 35: 40-52. doi: 10.1016/j.jnc.2016.11.007
LANG M, FAINMON J, EK C. A Case Study of Anthropogenic Impact on the CO2 Levels in Low-Volume Profile of the Balcarka Cave (Moravian Karst, Czech Republic)[J]. Acta Carsologica, 2015, 44(1): 71-80.
MATTEY D P, ATKINSON T C, HOFFMAN D L, et al. External Controls on CO2 in Gibraltar Cave Air and Ground Air: Implications for Interpretation of δ13C in Speleothems[J]. Science of the Total Environment, 2021, 777: 146096. doi: 10.1016/j.scitotenv.2021.146096
FERNÁNDEZ P L, GUTIERREZ I, QUINDÓS L S, et al. Natural Ventilation of the Paintings Room in the Altamira Cave[J]. Nature, 1986, 321(6070): 586-588. doi: 10.1038/321586a0
BREITENBACH S F M, LECHLEITNER F A, MEYER H, et al. Cave Ventilation and Rainfall Signals in Dripwater in a Monsoonal Setting - a Monitoring Study from NE India[J]. Chemical Geology, 2015, 402: 111-124. doi: 10.1016/j.chemgeo.2015.03.011
PRELOVŠEK M, ŠEBELA S, TURK J. Carbon Dioxide in Postojna Cave (Slovenia): Spatial Distribution, Seasonal Dynamics and Evaluation of Plausible Sources and Sinks[J]. Environmental Earth Sciences, 2018, 77(7): 289. doi: 10.1007/s12665-018-7459-6
CAO M, LEI J Q, HE Q F, et al. Rainfall-Driven and Hydrologically-Controlled Variations in Cave CO2 Sources and Dynamics: Evidence from Monitoring Soil CO2, Stream Flow and Cave CO2[J]. Journal of Hydrology, 2021, 595(1): 126060.
PU J B, YUAN D X, ZHAO H P, et al. Hydrochemical and PCO2 Variations of a Cave Stream in a Subtropical Karst Area, Chongqing, SW China: Piston Effects, Dilution Effects, Soil CO2 and Buffer Effects[J]. Environmental Earth Sciences, 2014, 71(9): 4039-4049. doi: 10.1007/s12665-013-2787-z
李涛, 曹建华, 张美良, 等. 桂林盘龙洞岩溶表层带土壤CO2浓度的季节变化研究[J]. 中国岩溶, 2011, 30(3): 348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018
TREBLE P C, FAIRCHILD I J, GRIFFITHS A, et al. Impacts of Cave Air Ventilation and In-Cave Prior Calcite Precipitation on Golgotha Cave Dripwater Chemistry, Southwest Australia[J]. Quaternary Science Reviews, 2015, 127: 61-72. doi: 10.1016/j.quascirev.2015.06.001
BALDINI J U L, MCDERMOTT F, HOFFMANN D L, et al. Very High-Frequency and Seasonal Cave Atmosphere pCO2 Variability: Implications for Stalagmite Growth and Oxygen Isotope-Based Paleoclimate Records[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 118-129.
SPÖTL C, FAIRCHILD I J, TOOTH A F, et al. Cave Air Control on Dripwater Geochemistry, Obir Caves (Austria): Implications for Speleothem Deposition in Dynamically Ventilated Caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9): 1687-1701.
田宁, 杨琰, 袁海英, 等. 鸡冠洞CO2222Rn变化特征以及与旅游活动关系研究[J]. 地球与环境, 2020, 48(2): 210-219.
张萍, 杨琰, 孙喆, 等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017, 38(1): 60-69.
NIE Y B, SUN J Q. Moisture Sources and Transport for Extreme Precipitation over Henan in July 2021[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097446.
任小凤, 杨琰, 彭涛, 等. 豫西鸡冠洞洞穴水及现代沉积物Mg, Sr和Ba记录及其意义[J]. 中国岩溶, 2014, 33(1): 57-63.
LI Y D, YANG Y, JIANG X Y, et al. The Transport Mechanism of Carbon Isotopes Based on 10 Years of Cave Monitoring: Implications for Paleoclimate Reconstruction[J]. Journal of Hydrology, 2021, 592: 125841.
BREECKER D O, PAYNE A E, QUADE J, et al. The Sources and Sinks of CO2 in Caves under Mixed Woodland and Grassland Vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96: 230-246.
SCHOELLER D A, KLEIN P D, WATKINS J B, et al. 13C Abundances of Nutrients and the Effect of Variations in 13C Isotopic Abundances of Test Meals Formulated for 13CO2 Breath Tests[J]. The American Journal of Clinical Nutrition, 1980, 33(11): 2375-2385.
吴夏, 潘谋成, 殷建军, 等. 桂林凉风洞洞穴空气及滴水水化学对区域环境的响应[J]. 中国岩溶, 2021, 40(3): 513-520.
施晓, 杨琰, 李一冬, 等. 岩溶关键带土壤—洞穴系统CO2运移的时空变化: 以河南鸡冠洞为例[J]. 中国岩溶, 2021, 40(4): 580-591.
FRISIA S, FAIRCHILD I J, FOHLMEISTER J, et al. Carbon Mass-Balance Modelling and Carbon Isotope Exchange Processes in Dynamic Caves[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
LI T Y, LI H C, XIANG X J, et al. Transportation Characteristics of δ13C in the Plant-Siol-Bedrock-Cave System in Chongqing Karst Area [J]. Science China Earth Sciences, 2012, 55(4): 685-694.
袁道先, 章程. 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3): 355-365.
袁道先, 刘再华, 蒋忠诚. 碳循环与岩溶地质环境[M]. 北京: 科学出版社, 2003.
邓亚东, 陈伟海, 罗书文, 等. 旅游洞穴景观脆弱性概念与评价研究[J]. 西南大学学报(自然科学版), 2020, 42(8): 129-137.