POINTET T. The United Nations World Water Development Report 2022[EB/OL]. https://max.book118.com/html/2022/0321/7036146150004103.shtm.
杨晓霖, 潘玉君, 李晓莉. 西南地区水资源生态足迹及承载力动态特征与预测分析[J]. 西南师范大学学报(自然科学版), 2022, 47(6): 58-67.
周长松, 邹胜章, 冯启言, 等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50.
齐跃明, 袁冬梅, 马超, 等. 淄河源区岩溶地下水可开采资源量评价[J]. 西南师范大学学报(自然科学版), 2019, 44(11): 65-72. doi: 10.13718/j.cnki.xsxb.2019.11.010
国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 北京: 中国标准出版社, 2022.
JUNJIE B A. Characteristics of Nitrate and Heavy Metals Pollution in Huixian Wetland and Its Health Risk Assessment[J]. Alexandria Engineering Journal, 2022, 61(11): 9031-9042. doi: 10.1016/j.aej.2022.02.045
MOHAMMADPOUR A, GHAREHCHAHI E, BADEENEZHAD A, et al. Nitrate in Groundwater Resources of Hormozgan Province, Southern Iran: Concentration Estimation, Distribution and Probabilistic Health Risk Assessment Using Monte Carlo Simulation[J]. Water, 2022, 14(4): 564. doi: 10.3390/w14040564
ARAUZO M, VALLADOLID M, GARCÍA G, et al. N and P Behaviour in Alluvial Aquifers and in the Soil Solution of Their Catchment Areas: How Land Use and the Physical Environment Contribute to Diffuse Pollution[J]. The Science of the Total Environment, 2022, 804: 150056. doi: 10.1016/j.scitotenv.2021.150056
OPSAHL S P. New Insights into Nitrate Dynamics in a Karst Groundwater System Gained from in Situ High-Frequency Optical Sensor Measurements[J]. Journal of Hydrology, 2017, 546: 179-188. doi: 10.1016/j.jhydrol.2016.12.038
LI J, ZHU D N, ZHANG S, et al. Application of the Hydrochemistry, Stable Isotopes and MixSIAR Model to Identify Nitrate Sources and Transformations in Surface Water and Groundwater of an Intensive Agricultural Karst Wetland in Guilin, China[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113205. doi: 10.1016/j.ecoenv.2022.113205
CHANG L R, MING X X, GROVES C, et al. Nitrate Fate and Decadal Shift Impacted by Land Use Change in a Rural Karst Basin as Revealed by Dual Nitrate Isotopes[J]. Environmental Pollution (Barking, Essex: 1987), 2022, 299: 118822. doi: 10.1016/j.envpol.2022.118822
DJEMA M, MEBROUK N. Groundwater Quality and Nitrate Pollution in the Nador Plain, Algeria[J]. Environmental Earth Sciences, 2022, 81(18): 460. doi: 10.1007/s12665-022-10557-9
REN K, PAN X D, LIANG J P, et al. Sources and Fate of Nitrate in Groundwater in a Typical Karst Basin: Insights from Carbon, Nitrogen, and Oxygen Isotopes[J]. Environmental Science, 2021, 42(5): 2268-2275.
CAO X X, YANG S D, WU P, et al. Coupling Stable Isotopes to Evaluate Sources and Transformations of Nitrate in Groundwater and Inflowing Rivers around the Caohai Karst Wetland, Southwest China[J]. Environmental Science and Pollution Research, 2021, 28(33): 45826-45839. doi: 10.1007/s11356-021-13827-4
WANG Z J. Integrated Understanding of the Critical Zone Processes in a Subtropical Karst Watershed (Qingmuguan, Southwestern China): Hydrochemical and Isotopic Constraints[J]. Science of the Total Environment, 2020, 749: 141257. doi: 10.1016/j.scitotenv.2020.141257
CHEN Y, JIANG Y J. The Effects of Agricultural Activities and Atmospheric Acid Deposition on Carbonate Weathering in a Small Karstic Agricultural Catchment, Southwest China[J]. Acta Carsologica/Karsoslovni Zbornik, 2016, 45(2): 126-129.
WU Y X, JIANG Y J, YUAN D X, et al. Modeling Hydrological Responses of Karst Spring to Storm Events: Example of the Shuifang Spring (Jinfo Mt, Chongqing, China)[J]. Environmental Geology, 2008, 55(7): 1545-1553. doi: 10.1007/s00254-007-1105-z
XIAO Q, SHEN L C, WU K Y. Hydrochemical Variations of the Springs on Jinfo Mountain, Chongqing, China[J]. Acta Carsologica, 2015, 44(1): 12-17.
ZHANG C, YAN J, PEI J G, et al. Hydrochemical Variations of Epikarst Springs in Vertical Climate Zones: a Case Study in Jinfo Mountain National Nature Reserve of China[J]. Environmental Earth Sciences, 2011, 63(2): 375-381. doi: 10.1007/s12665-010-0708-y
谢国文, 杨平恒, 盛婷, 等. 人类活动影响下的垂直气候带岩溶泉地球化学特征对比: 以重庆金佛山水房泉、碧潭泉为例[J]. 环境科学, 2019, 40(7): 3078-3088.
XIE G W, YANG P H, SHENG T, et al. Comparison of the Geochemical Characteristics of Karst Springs of a Vertically Zoned Climate Region under Human Activity: a Case of Shuifang Spring and Bitan Spring in the Jinfo Mountain Area, Chongqing[J]. Environmental Science, 2019, 40(7): 3078-3088.
YANG P H, MING X X, GROVES C, et al. Impact of Hotel Septic Effluent on the Jinfoshan Karst Aquifer, SW China[J]. Hydrogeology Journal, 2019, 27(1): 321-334. doi: 10.1007/s10040-018-1890-3
YANG P H. Nitrate Sources and Biogeochemical Processes in Karst Underground Rivers Impacted by Different Anthropogenic Input Characteristics[J]. Environmental Pollution, 2020, 265: 114835. doi: 10.1016/j.envpol.2020.114835
XIAO Q, WU K Y, SHEN L C. Nitrate Fate and Origin in Epikarst Springs in Jinfo Mountain Area, Southwest China[J]. Arabian Journal of Geosciences, 2016, 9(7): 483. doi: 10.1007/s12517-016-2510-y
李宛鸿, 张芬, 李永华, 等. 重庆金佛山旅游气候资源的初步评估[J]. 气象科技进展, 2021, 11(2): 112-115. doi: 10.3969/j.issn.2095-1973.2021.02.020
张露, 郭晴. 秸秆资源化利用的大气污染物排放机理、时空规律与减排策略研究[J]. 西南大学学报(自然科学版), 2020, 42(7): 143-153.
孙德尧, 张科, 吴才武, 等. 承德市大气污染物特征及潜在来源分析[J]. 西南师范大学学报(自然科学版), 2021, 46(12): 53-62. doi: 10.13718/j.cnki.xsxb.2021.12.009
吴月霞. 基于SWMM的岩溶泉域水文过程的模拟研究: 以重庆金佛山水房泉为例[D]. 重庆: 西南大学, 2008.
杨平恒, 詹兆君, 明晓星, 等. 旅游酒店排污影响下的岩溶地下水水化学变化[J]. 湖泊科学, 2019, 31(2): 416-428.
明晓星, 杨平恒, 谢世友, 等. 金佛山世界遗产地岩溶地下河系统硝酸盐来源与转化[J]. 湖泊科学, 2019, 31(5): 1299-1309.
YANG P H. Coupled Hydrogeochemical Evaluation of a Vulnerable Karst Aquifer Impacted by Septic Effluent in a Protected Natural Area[J]. Science of the Total Environment, 2019, 658: 1475-1484.
杨平恒. 重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律[D]. 重庆: 西南大学, 2010.
杨平恒, 罗鉴银, 彭稳, 等. 在线技术在岩溶地下水示踪试验中的应用: 以青木关地下河系统岩口落水洞至姜家泉段为例[J]. 中国岩溶, 2008, 27(3): 215-220.
黄宗理, 张良弼. 地球科学大辞典-应用学科卷[M]. 北京: 地质出版社, 2005.
西南师范学院地理系研究所. 青木关背斜地下水的分布规律及其利用[J]. 西南师范学院学报, 1960(2): 105-112, 132.
杨平恒, 袁道先, 叶许春, 等. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报, 2013, 58(18): 1755-1763.
PARNELL A C, INGER R, BEARHOP S, et al. Source Partitioning Using Stable Isotopes: Coping with too much Variation[J]. PLoS One, 2010, 5(3): 9672.
LI S L, LIU C Q, LANG Y C. Using the Dual Isotopes Approach to Identify the Nitrate Sources of Karst Groundwater, Guiyang, Southwest China[J]. Chinese Journal of Geochemistry, 2006, 25(1): 173-174.
明晓星. 金佛山水房泉地下河流域硝酸盐来源与迁移转化[D]. 重庆: 西南大学, 2020.
WANG J, YE Y, WANG Y, et al. Using δ15N and δ18O Values to Identify Sources of Nitrate in the Dianbu River in the Chaohu Lake Basin[J]. Shuili Xuebao/Journal of Hydraulic Engineering, 2017, 48(10): 1195-1205.
SILVA S R. Forensic Applications of Nitrogen and Oxygen Isotopes in Tracing Nitrate Sources in Urban Environments[J]. Environmental Forensics, 2002, 3(2): 125-130.
WEN T S. Isotopic Evidence of Nitrogen Sources and Nitrogen Transformation in Arsenic-Contaminated Groundwater[J]. Science of the Total Environment, 2017, 578: 167-185.
NESTLER A, BERGLUND M, ACCOE F, et al. Isotopes for Improved Management of Nitrate Pollution in Aqueous Resources: Review of Surface Water Field Studies[J]. Environmental Science and Pollution Research, 2011, 18(4): 519-533.
MIAO Y, ZHANG C, XIAO Q, et al. Dynamic Variations and Sources of Nitrate during Dry Season in the Lijiang River[J]. Environmental Science, 2018, 39(4): 1589-1597.
YUE F J, LI S L, LIU C Q, et al. Tracing Nitrate Sources with Dual Isotopes and Long Term Monitoring of Nitrogen Species in the Yellow River, China[J]. Scientific Reports, 2017, 7: 8537.
ELLIOTT E M, KENDALL C, WANKEL S D, et al. Nitrogen Isotopes as Indicators of NO(x) Source Contributions to Atmospheric Nitrate Deposition across the Midwestern and Northeastern United States[J]. Environmental Science and Technology, 2007, 41(22): 7661-7667.
HE S. Predictive Modeling of Groundwater Nitrate Pollution and Evaluating Its Main Impact Factors Using Random Forest[J]. Chemosphere, 2022, 290: 133388.
GILLHAM R W, CHERRY J A. Field Evidence of Denitrification in Shallow Groundwater Flow Systems[J]. Water Quality Research Journal, 1978, 13(1): 53-72.
DESIMONE L A, HOWES B L. Nitrogen Transport and Transformations in a Shallow Aquifer Receiving Wastewater Discharge: a Mass Balance Approach[J]. Water Resources Research, 1998, 34(2): 271-285.
何碧烟, 欧光南, 吕禹泽, 等. 杏林湾水体的硝化作用及其影响因素研究[J]. 微生物前沿, 2016(4): 71-80.
UTOM A U, WERBAN U, LEVEN C, et al. Groundwater Nitrification and Denitrification are not always Strictly Aerobic and Anaerobic Processes, Respectively: an Assessment of Dual-Nitrate Isotopic and Chemical Evidence in a Stratified Alluvial Aquifer[J]. Biogeochemistry, 2020, 147(2): 211-223.
MING X X. Nitrate Migration and Transformations in Groundwater Quantified by Dual Nitrate Isotopes and Hydrochemistry in a Karst World Heritage Site[J]. Science of the Total Environment, 2020, 735: 138907.
JI X L. Quantitative Identification of Nitrate Pollution Sources and Uncertainty Analysis Based on Dual Isotope Approach in an Agricultural Watershed[J]. Environmental Pollution, 2017, 229: 586-594.