YAO Y Y. Three-Way Decisions with Probabilistic Rough Sets [J]. Information Sciences, 2010, 180(3): 341-353. doi: 10.1016/j.ins.2009.09.021
YAO Y Y. An Outline of a Theory of Three-Way Decisions [M]//Rough Sets and Current Trends in Computing. Heidelberg: Springer, 2012: 1-17.
YAO Y Y. The Superiority of Three-Way Decisions in Probabilistic Rough Set Models [J]. Information Sciences, 2011, 181(6): 1080-1096. doi: 10.1016/j.ins.2010.11.019
WANG H B, SMARANDACHE F, SUNDERRAMAN R. Single Valued Neutrosophic Sets [J]. Multispace Multistruct, 20104: 410-413.
ATANASSOV K T. Intuitionistic Fuzzy Sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96. doi: 10.1016/S0165-0114(86)80034-3
JIAO L, YANG H L, LI S G. Three-Way Decision Based on Decision-Theoretic Rough Sets with Single-Valued Neutrosophic Information [J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 657-665. doi: 10.1007/s13042-019-01023-3
CHUTIA R, GOGOI M K, FIROZJA M A, et al. Ordering Single-Valued Neutrosophic Numbers Based on Flexibility Parameters and Its Reasonable Properties [J]. International Journal of Intelligent Systems, 2021, 36(4): 1831-1850. doi: 10.1002/int.22362
QIN K Y, WANG L. New Similarity and Entropy Measures of Single-Valued Neutrosophic Sets with Applications in Multi-Attribute Decision Making [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2020, 24(21): 16165-16176.
ZHANG X H, BO C X, SMARANDACHE F, et al. New Inclusion Relation of Neutrosophic Sets with Applications and Related Lattice Structure [J]. International Journal of Machine Learning and Cybernetics, 2018, 9(10): 1753-1763. doi: 10.1007/s13042-018-0817-6
PENG J J. An Outranking Approach for Multi-Criteria Decision-Making Problems with Simplified Neutrosophic Sets [J]. Applied Soft Computing, 2014, 25: 336-346. doi: 10.1016/j.asoc.2014.08.070
杨海龙, 任欢欢, 焦丽. 单值中智信息下的一种新型三支决策模型[J]. 陕西师范大学学报(自然科学版), 2022, 50(3)1-6.
GRZYMAŁA-BUSSE J W. Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation [M]//Rough Sets and Current Trends in Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 244-253.
LIU D, LIANG D, WANG C. A Novel Three-Way Decision Model Based on Incomplete Information System [J]. Knowledge-Based Systems, 2016, 91: 32-45. doi: 10.1016/j.knosys.2015.07.036
XUE Z A, XIN X W, YUAN Y L, et al. Intuitionistic Fuzzy Possibility Measure-Based Three-Way Decisions for Incomplete Data [J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(5): 5657-5666.
LUO C, LI T, HUANG Y, et al. Updating Three-Way Decisions in Incomplete Multi-Scale Information Systems [J]. Information Sciences, 2019, 476: 274-289. doi: 10.1016/j.ins.2018.10.012
ZHAN J M, YE J, DING W P, et al. A Novel Three-Way Decision Model Based on Utility Theory in Incomplete Fuzzy Decision Systems [J]. IEEE Transactions on Fuzzy Systems, 2022, 30(7): 2210-2226. doi: 10.1109/TFUZZ.2021.3078012
WEN H L, XIA F, TANG H X. Three-Way Decision for Incomplete Real-Valued Data [J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2020, 39(5): 7843-7862.
LUO J F, FUJITA H, YAO Y Y, etal. On Modeling Similarity and Three-Way Decision under Incomplete Information in Rough Set Theory [J]. Knowledge-Based Systems, 2020, 191: 1-14.
LUO J F, HU M J, QIN K Y. Three-Way Decision with Incomplete Information Based on Similarity and Satisfiability [J]. International Journal of Approximate Reasoning, 2020, 120: 151-183. doi: 10.1016/j.ijar.2020.02.005