ZADEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353. doi: 10.1016/S0019-9958(65)90241-X
BILLOT A. Economic Theory of Fuzzy Equilibria: An Axiomatic Analysis[M]. Berlin: Springer-Verlag, 1992.
HUANG N. Existence of Equilibrium for Generalized Abstract Fuzzy Economies[J]. Fuzzy Sets and Systems, 2001, 117(1): 151-156. doi: 10.1016/S0165-0114(98)00363-7
KYU W, KIM. Generalized Fuzzy Games and Fuzzy Equilibria[J]. Fuzzy Sets and Systems, 2001, 122(2): 293-301. doi: 10.1016/S0165-0114(00)00073-7
PAWLAK Z. Rough Sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356.
SCALZO V. On the Existence of Maximal Elements, Fixed Points and Equilibria of Generalized Games in a Fuzzy Environment[J]. Fuzzy Sets and Systems, 2015, 272: 126-133. doi: 10.1016/j.fss.2015.02.006
YANG Z, WANG A Q. Existence and Stability of the α-Core for Fuzzy Games[J]. Fuzzy Sets and Systems, 2018, 341: 59-68. doi: 10.1016/j.fss.2017.05.021
VAN HUNG N, TAM V M, O'REGAN D, et al. A New Class of Generalized Multiobjective Games in Bounded Rationality with Fuzzy Mappings: Structural (Λ, ε)[J]. Journal of Computational and Applied Mathematics, 2020, 372: 112735. doi: 10.1016/j.cam.2020.112735
ZHOU L, JIA W S, LIU L P. Essential Stability of Fuzzy Equilibria for Generalized Multiobjective Games with Fuzzy Constraint Mappings[J]. Fuzzy Sets and Systems, 2022, 447: 113-122. doi: 10.1016/j.fss.2021.11.012
YAO J T, HERBERT J P. A Game-Theoretic Perspective on Rough Set Analysis[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2008, 20(3): 291-298.
昝廷全, 朱天博. 博弈论的粗集模型[J]. 中国传媒大学学报(自然科学版), 2010, 17(2): 19-26.
HERBERT J P, YAO J T. Game-Theoretic Rough Sets[J]. Fundamenta Informaticae, 2011, 108(3-4): 267-286. doi: 10.3233/FI-2011-423
AZAM N, YAO J T. Analyzing Uncertainties of Probabilistic Rough Set Regions with Game-Theoretic Rough Sets[J]. International Journal of Approximate Reasoning, 2014, 55(1): 142-155. doi: 10.1016/j.ijar.2013.03.015
周辉. 基于粗糙集的不完全信息静态博弈及其均衡分析[J]. 太原师范学院学报(自然科学版), 2014, 13(3): 71-73, 87.
俞建. 博弈论与非线性分析[M]. 北京: 科学出版社, 2008.
GLICKSBERG I L. A Further Generalization of the Kakutani Fixed Point Theorem, with Application to Nash Equilibrium Points[J]. Proceedings of the American Mathematical Society, 1952, 3(1): 170-174.
HARSANYI J C. Games with Incomplete Information Played by "Bayesian" Players, Ⅰ-Ⅲ[J]. Management Science, 2004, 50(12 Supplement): 1804-1817.