WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable Biochar to Mitigate Global Climate Change[J]. Nature Communications, 2010, 1: 56. doi: 10.1038/ncomms1053
|
HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant[J]. Biochar, 2020, 2(4): 379-420. doi: 10.1007/s42773-020-00065-z
|
AL-WABEL M I, HUSSAIN Q, USMAN A R A, et al. Impact of Biochar Properties on Soil Conditions and Agricultural Sustainability: A Review[J]. Land Degradation and Development, 2018, 29(7): 2124-2161. doi: 10.1002/ldr.2829
|
QIU M Q, LIU L J, LING Q, et al. Biochar for the Removal of Contaminants from Soil and Water: A Review[J]. Biochar, 2022, 4: 19. doi: 10.1007/s42773-022-00146-1
|
CHENG N, WANG B, WU P, et al. Adsorption of Emerging Contaminants from Water and Wastewater by Modified Biochar: A Review[J]. Environmental Pollution, 2021, 273: 116448. doi: 10.1016/j.envpol.2021.116448
|
WANG G H, LIU F, TARIQ M, et al. A Comparative Study on Various Indicators for Evaluating Soil Health of Three Biochar Materials Application[J]. Journal of Cleaner Production, 2022, 343: 131085. doi: 10.1016/j.jclepro.2022.131085
|
王清华, 熊海峰, 邓朝仁, 等. 生物炭对间歇曝气湿地N2O排放途径的影响[J]. 西南大学学报(自然科学版), 2023, 45(11): 166-175. doi: 10.13718/j.cnki.xdzk.2023.11.016
|
CHAGAS J K M, DE FIGUEIREDO C C, RAMOS M L G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis[J]. Journal of Environmental Management, 2022, 305: 114403. doi: 10.1016/j.jenvman.2021.114403
|
BRASSARD P, GODBOUT S, RAGHAVAN V. Soil Biochar Amendment as a Climate Change Mitigation Tool: Key Parameters and Mechanisms Involved[J]. Journal of Environmental Management, 2016, 181: 484-497.
|
FAWZY S, OSMAN A I, YANG H P, et al. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review[J]. Environmental Chemistry Letters, 2021, 19(4): 3023-3055. doi: 10.1007/s10311-021-01210-1
|
BATISTA R, YOUNG P, LAWRENCE J, et al. Biochar Market Profile Report[J]. Gippsland Climate Change Network, Worcester Polytechnic Institute, 2021, 210: 1-62.
|
CAMPBELL R M, ANDERSON N M, DAUGAARD D E, et al. Financial Viability of Biofuel and Biochar Production from Forest Biomass in the Face of Market Price Volatility and Uncertainty[J]. Applied Energy, 2018, 230: 330-343. doi: 10.1016/j.apenergy.2018.08.085
|
DAHLAWI S, NAEEM A, RENGEL Z, et al. Biochar Application for the Remediation of Salt-Affected Soils: Challenges and Opportunities[J]. Science of the Total Environment, 2018, 625: 320-335. doi: 10.1016/j.scitotenv.2017.12.257
|
JIAO Y X, LI D Y, WANG M, et al. A Scientometric Review of Biochar Preparation Research from 2006 to 2019[J]. Biochar, 2021, 3(3): 283-298. doi: 10.1007/s42773-021-00091-5
|
ZHOU Q F, HOUGE B A, TONG Z H, et al. An in-Situ Technique for Producing Low-Cost Agricultural Biochar[J]. Pedosphere, 2018, 28(4): 690-695. doi: 10.1016/S1002-0160(17)60482-X
|
校亮, 韦婧, 袁国栋, 等. 田间"限氧喷雾"制备生物炭技术与炭质表征[J]. 西南大学学报(自然科学版), 2019, 41(6): 15-20. doi: 10.13718/j.cnki.xdzk.2019.06.003
|
MARRIS E. Black is the New Green[J]. Nature, 2006, 442(7103): 624-626. doi: 10.1038/442624a
|
HARDER B. Smoldered-Earth Policy: Created by Ancient Amazonian Natives, Fertile, Dark Soils Retain Abundant Carbon[J]. Science News, 2006, 169(9): 133.
|
WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-Derived Charcoal Causes Loss of Forest Humus[J]. Science, 2008, 320(5876): 629. doi: 10.1126/science.1154960
|
XIAO L, FENG L R, YUAN G D, et al. Low-Cost Field Production of Biochars and Their Properties[J]. Environmental Geochemistry and Health, 2020, 42(6): 1569-1578. doi: 10.1007/s10653-019-00458-5
|
校亮, 袁国栋, 毕冬雪, 等. 农林废弃物田间曝氧水-火联动制炭设备及技术研究[J]. 农业工程学报, 2019, 35(11): 239-244.
|
NAN H Y, YIN J X, YANG F, et al. Pyrolysis Temperature-Dependent Carbon Retention and Stability of Biochar with Participation of Calcium: Implications to Carbon Sequestration[J]. Environmental Pollution, 2021, 287: 117566. doi: 10.1016/j.envpol.2021.117566
|
XIAO X, CHEN B L, CHEN Z M, et al. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review[J]. Environmental Science and Technology, 2018, 52(9): 5027-5047. doi: 10.1021/acs.est.7b06487
|
XIAO L A, WU J H, LI W H, et al. Mineral Coating Enhances the Carbon Sequestration Capacity of Biochar Derived from Paulownia Biowaste[J]. Agronomy, 2023, 13(9): 2361. doi: 10.3390/agronomy13092361
|
王润之, 何强, 郭程晨, 等. 稻秆生物炭负载Fe/Ca对化粪池中磷的吸附特性[J]. 土木与环境工程学报(中英文), 2023(3): 205-214.
|
SHAFIZADEH F. Introduction to Pyrolysis of Biomass[J]. Journal of Analytical and Applied Pyrolysis, 1982, 3(4): 283-305. doi: 10.1016/0165-2370(82)80017-X
|
HAMELINCK C N, VAN HOOIJDONK G, FAAIJ A P. Ethanol from Lignocellulosic Biomass: Techno-Economic Performance in Short-, Middle- and Long-Term[J]. Biomass and Bioenergy, 2005, 28(4): 384-410. doi: 10.1016/j.biombioe.2004.09.002
|
张进红, 林启美, 赵小蓉, 等. 不同炭化温度和时间下牛粪生物炭理化特性分析与评价[J]. 农业机械学报, 2018, 49(11): 298-305.
|
张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913-925.
|
曾凤铃, 邹玉霞, 张卫华, 等. 生物炭用量与粒径对紫色土水分入渗及再分布特征的影响[J]. 西南大学学报(自然科学版), 2022, 44(12): 136-144. doi: 10.13718/j.cnki.xdzk.2022.12.014
|
袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417.
|
韦思业, 宋建中, 彭平安, 等. 不同温度制备生物炭的热解产物特征[J]. 地球化学, 2019, 48(5): 511-520.
|
LIU M M, ZHAO Z Y, LU Q X, et al. Release of Dissolved Organic Carbon from Biochar and Formation of Humic-Like Component during Photoreaction: Effects of Ca2+ and pH[J]. Water Research, 2022, 219: 118616. doi: 10.1016/j.watres.2022.118616
|
王亚静, 王飞, 石祖梁, 等. 基于农业供给侧结构性改革背景的秸秆资源与利用研究[J]. 中国农业资源与区划, 2017, 38(6): 13-20.
|