唐章林, 王霖, 张娅茹, 等. 甘蓝型油菜种质资源苗期耐湿性综合评价与筛选[J]. 西南大学学报(自然科学版), 2022, 44(12): 19-28. doi: 10.13718/j.cnki.xdzk.2022.12.003
|
AGURLA S, GAHIR S, MUNEMASA S, et al. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress[J]. Advances in Experimental Medicine and Biology, 2018, 1081: 215-232.
|
SCHWARTZ A. Role of Ca2+ and EGTA on Stomatal Movements in Commelina Communis L[J]. Plant Physiology, 1985, 79(4): 1003-1005. doi: 10.1104/pp.79.4.1003
|
NGC K Y, MCAINSH M R, GRAY J E, et al. Calcium-based Signalling Systems in Guard Cells[J]. New Phytologist, 2001, 151(1): 109-120. doi: 10.1046/j.1469-8137.2001.00152.x
|
DEFALCOT A, BENDER K W, SNEDDEN W A. Breaking the Code: Ca2+ Sensors in Plant Signalling[J]. Biochemical Journal, 2010, 425(1): 27-40. doi: 10.1042/BJ20091147
|
ANDREWS C, XU Y T, KIRBERGER M, et al. Structural Aspects and Prediction of Calmodulin-binding Proteins[J]. International Journal of Molecular Sciences, 2020, 22(1): 308. doi: 10.3390/ijms22010308
|
BOUCHÉ N, YELLIN A, SNEDDEN W A, et al. Plant-specific Calmodulin-binding Proteins[J]. Annual Review of Plant Biology, 2005, 56: 435-466. doi: 10.1146/annurev.arplant.56.032604.144224
|
LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al. Calmodulins and Calcineurin B-like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants[J]. The Plant Cell, 2002, 14(suppl_1): 389-400.
|
ZHOU Y P, CHEN Y Z, YAMAMOTO K T, et al. Sequence and Expression Analysis of the Arabidopsis IQM Family[J]. Acta Physiologiae Plantarum, 2010, 32(1): 191-198. doi: 10.1007/s11738-009-0398-9
|
陈唯. 拟南芥IQM1和IQM4参与调控气孔运动的研究[D]. 广州: 广州大学, 2020.
|
冯奕嘉. 拟南芥IQM6参与年龄途径成花调控的初步研究[D]. 广州: 广州大学, 2019.
|
弓路平. 拟南芥IQM5参与成花调控的分子遗传学研究[D]. 广州: 广州大学, 2017.
|
CHENGC Y, KRISHNAKUMAR V, CHAN A P, et al. Araport11: a Complete Reannotation of the Arabidopsis Thaliana Reference Genome[J]. The Plant Journal, 2017, 89(4): 789-804. doi: 10.1111/tpj.13415
|
CHEN H X, WANG T P, HE X N, et al. BRAD V3.0: an Upgraded Brassicaceae Database[J]. Nucleic Acids Research, 2022, 50(D1): 1432-1441. doi: 10.1093/nar/gkab1057
|
SONG X M, WEI Y P, XIAO D, et al. Brassica carinata Genome Characterization Clarifies U's Triangle Model of Evolution and Polyploidy in Brassica[J]. Plant Physiology, 2021, 186(1): 388-406. doi: 10.1093/plphys/kiab048
|
SCHOCHC L, CIUFO S, DOMRACHEV M, et al. NCBI Taxonomy: a Comprehensive Update on Curation, Resources and Tools[J]. Database, 2020: 62.
|
POTTERS C, LUCIANI A, EDDY S R, et al. HMMER Web Server: 2018 Update[J]. Nucleic Acids Research, 2018, 46(W1): 200-204. doi: 10.1093/nar/gky448
|
MOUNTD W. Using Hidden Markov Models to Align Multiple Sequences[J]. Cold Spring Harbor Protocols, 2009(7): 41.
|
LETUNIC I, KHEDKAR S, BORK P. SMART: Recent Updates, New Developments and Status in 2020[J]. Nucleic AcidsResearch, 2021, 49(D1): 458-460. doi: 10.1093/nar/gkaa937
|
MISTRY J, CHUGURANSKY S, WILLIAMS L, et al. Pfam: The Protein Families Database in 2021[J]. Nucleic Acids Research, 2021, 49(D1): 412-419. doi: 10.1093/nar/gkaa913
|
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120
|
HE Z L, ZHANG H K, GAO S H, et al. Evolview V2: an Online Visualization and Management Tool for Customized and Annotated Phylogenetic Trees[J]. Nucleic Acids Research, 2016, 44(W1): 236-241. doi: 10.1093/nar/gkw370
|
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an Upgraded Gene Feature Visualization Server[J]. Bioinformatics, 2015, 31(8): 1296-1297. doi: 10.1093/bioinformatics/btu817
|
BAILEYT L, BODEN M, BUSKE F A, et al. MEME Suite: Tools for Motif Discovery and Searching[J]. Nucleic Acids Research, 2009, 37(suppl_2): 202-208.
|
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. doi: 10.1093/nar/gkr1293
|
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
|
LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a Database of Plant Cis-acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. doi: 10.1093/nar/30.1.325
|
HORTON P, PARKK J, OBAYASHI T, et al. WoLF PSORT: Protein Localization Predictor[J]. Nucleic Acids Research, 2007, 35(suppl_2): 585-587.
|
SZKLARCZYK D, GABLEA L, LYON D, et al. STRING V11: Protein-protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-wide Experimental Datasets[J]. Nucleic Acids Research, 2019, 47(D1): 607-613. doi: 10.1093/nar/gky1131
|
CHAO H Y, LI T, LUO C Y, et al. BrassicaEDB: a Gene Expression Database for Brassica Crops[J]. International Journal of Molecular Sciences, 2020, 21(16): 5831. doi: 10.3390/ijms21165831
|
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks[J]. Genome Research, 2003, 13(11): 2498-2504. doi: 10.1101/gr.1239303
|
YU L J, LIU D, CHEN S Y, et al. Evolution and Expression of the Membrane Attack Complex and Perforin Gene Family in the Poaceae[J]. International Journal of Molecular Sciences, 2020, 21(16): 5736. doi: 10.3390/ijms21165736
|
CHEN X, SU W, ZHANG H, et al. Fraxinus mandshurica 4-Coumarate-CoA Ligase 2 Enhances Drought and Osmotic Stress Tolerance of Tobacco by Increasing Coniferyl Alcohol Content[J]. Plant Physiology and Biochemistry, 2020, 155: 697-708. doi: 10.1016/j.plaphy.2020.08.031
|
CABREIRA-CAGLIARI C, FAGUNDESD S, DIAS N F, et al. GILP Family: a Stress-responsive Group of Plant Proteins Containing a LITAF Motif[J]. Functional & Integrative Genomics, 2018, 18(1): 55-66.
|
ZHAO J J, WANG X W, DENG B, et al. Genetic Relationships within Brassica Rapa as Inferred from AFLP Fingerprints[J]. Theoretical and Applied Genetics, 2005, 110(7): 1301-1314. doi: 10.1007/s00122-005-1967-y
|
LIU S Y, LIU Y M, YANG X H, et al. The Brassica Oleracea Genome Reveals the Asymmetrical Evolution of Polyploid Genomes[J]. Nature Communications, 2014(5): 3930.
|
CHENG F, SUN R F, HOU X L, et al. Subgenome Parallel Selection is Associated with Morphotype Diversification and Convergent Crop Domestication in Brassica Rapa and Brassica Oleracea[J]. Nature Genetics, 2016, 48(10): 1218-1224. doi: 10.1038/ng.3634
|
GHORBANI R, ZAKIPOUR Z, ALEMZADEH A, et al. Genome-wide Analysis of AP2/ERF Transcription Factors Family in Brassica napus[J]. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. doi: 10.1007/s12298-020-00832-z
|
LOHANI N, BABAEI S, SINGHM B, et al. Genome-wide in Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus[J]. Plants (Basel), 2021, 10(4): 709.
|
XIA J C, WANG D, PENG Y Z, et al. Genome-wide Analysis of the YABBY Transcription Factor Family in Rapeseed (Brassica napus L.)[J]. Genes, 2021, 12(7): 981. doi: 10.3390/genes12070981
|
HE Y J, MAO S S, GAO Y L, et al. Genome-wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus[J]. PLoS One, 2016, 11(6): e0157558. doi: 10.1371/journal.pone.0157558
|
ZHOUY P, DUAN J, FUJIBE T, et al. At1, a Novel Calmodulin-binding Protein, is Involved in Stomatal Movement in Arabidopsis[J]. Plant Molecular Biology, 2012, 79(4): 333-346.
|
ZHOUY P, WU J H, XIAO W H, et al. Arabidopsis IQM4, a Novel Calmodulin-binding Protein, is Involved with Seed Dormancy and Germination in arabidopsis[J]. Frontiers in Plant Science, 2018(9): 721.
|
FAN T, LV T X, XIE C P, et al. Genome-wide Analysis of the IQM Gene Family in Rice (Oryza sativa L.)[J]. Plants, 2021, 10(9): 1949. doi: 10.3390/plants10091949
|
CHALHOUB B, DENOEUD F, LIU S Y, et al. Plant Genetics. Early Allopolyploid Evolution in the Post-neolithic Brassica napus Oilseed Genome[J]. Science, 2014, 345(6199): 950-953. doi: 10.1126/science.1253435
|
MUNJ H, KWON S J, YANG T J, et al. Genome-wide Comparative Analysis of the Brassica Rapa Gene Space Reveals Genome Shrinkage and Differential Loss of Duplicated Genes after Whole Genome Triplication[J]. Genome Biology, 2009, 10(10): 111. doi: 10.1186/gb-2009-10-10-r111
|