TOPOL E J. Toward the Eradication of Medical Diagnostic Errors[J]. Science, 2024, 383(6681): 9602. doi: 10.1126/science.adn9602
DARDANO P, REA I, DE STEFANO L. Microneedles-Based Electrochemical Sensors: New Tools for Advanced Biosensing[J]. Current Opinion in Electrochemistry, 2019, 17: 121-127. doi: 10.1016/j.coelec.2019.05.012
SAIFULLAH K M, FARAJI RAD Z. Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors[J]. Advanced Materials Interfaces, 2023, 10(10): 2201763. doi: 10.1002/admi.202201763
SCOTT J F, ROBINSON G M, FRENCH J M, et al. Blood Pressure Response to Glucose Potassium Insulin Therapy in Patients with Acute Stroke with Mild to Moderate Hyperglycaemia[J]. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70(3): 401-404. doi: 10.1136/jnnp.70.3.401
CARIGNAN C C, BAUER R A, PATTERSON A, et al. Self-Collection Blood Test for PFASs: Comparing Volumetric Microsamplers with a Traditional Serum Approach[J]. Environmental Science and Technology, 2023, 57(21): 7950-7957. doi: 10.1021/acs.est.2c09852
SAMANT P P, PRAUSNITZ M R. Mechanisms of Sampling Interstitial Fluid from Skin Using a Microneedle Patch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 4583-4588.
MA G J, WU C W. Microneedle, Bio-Microneedle and Bio-Inspired Microneedle: A Review[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2017, 251: 11-23. doi: 10.1016/j.jconrel.2017.02.011
HSIEH Y C, LIN C Y, LIN H Y, et al. Controllable-Swelling Microneedle-Assisted Ultrasensitive Paper Sensing Platforms for Personal Health Monitoring[J]. Advanced Healthcare Materials, 2023, 12(24): e2300321. doi: 10.1002/adhm.202300321
FENG Y X, HU H, WONG Y Y, et al. Microneedles: an Emerging Vaccine Delivery Tool and a Prospective Solution to the Challenges of SARS-CoV-2 Mass Vaccination[J]. Pharmaceutics, 2023, 15(5): 1349. doi: 10.3390/pharmaceutics15051349
KIM H, LEE J, HEO U, et al. Skin Preparation-Free, Stretchable Microneedle Adhesive Patches for Reliable Electrophysiological Sensing and Exoskeleton Robot Control[J]. Science Advances, 2024, 10(3): 5260. doi: 10.1126/sciadv.adk5260
MA T J. Remote Sensing Detection Enhancement[J]. Journal of Big Data, 2021, 8(1): 127. doi: 10.1186/s40537-021-00517-8
BOLAT G, DE LA PAZ E, AZEREDO N F, et al. Wearable Soft Electrochemical Microfluidic Device Integrated with Iontophoresis for Sweat Biosensing[J]. Analytical and Bioanalytical Chemistry, 2022, 414(18): 5411-5421. doi: 10.1007/s00216-021-03865-9
SHIKIDA M, HASEGAWA Y, AL FARISI M S, et al. Advancements in MEMS Technology for Medical Applications: Microneedles and Miniaturized Sensors[J]. Japanese Journal of Applied Physics, 2021, 61: SA0803.
MILLER P R, NARAYAN R J, POLSKY R. Microneedle-Based Sensors for Medical Diagnosis[J]. Journal of Materials Chemistry B, 2016, 4(8): 1379-1383. doi: 10.1039/C5TB02421H
ABBOTT N J. Evidence for Bulk Flow of Brain Interstitial Fluid: Significance for Physiology and Pathology[J]. Neurochemistry International, 2004, 45(4): 545-552. doi: 10.1016/j.neuint.2003.11.006
KOOL J, REUBSAET L, WESSELDIJK F, et al. Suction Blister Fluid as Potential Body Fluid for Biomarker Proteins[J]. Proteomics, 2007, 7(20): 3638-3650. doi: 10.1002/pmic.200600938
HEIKENFELD J, JAJACK A, FELDMAN B, et al. Accessing Analytes in Biofluids for Peripheral Biochemical Monitoring[J]. Nature Biotechnology, 2019, 37(4): 407-419. doi: 10.1038/s41587-019-0040-3
ALTENDORFER-KROATH T, SCHIMEK D, EBERL A, et al. Comparison of Cerebral Open Flow Microperfusion and Microdialysis when Sampling Small Lipophilic and Small Hydrophilic Substances[J]. Journal of Neuroscience Methods, 2019, 311: 394-401. doi: 10.1016/j.jneumeth.2018.09.024
ULRICH J D, BURCHETT J M, RESTIVO J L, et al. In Vivo Measurement of Apolipoprotein E from the Brain Interstitial Fluid Using Microdialysis[J]. Molecular Neurodegeneration, 2013, 8: 13. doi: 10.1186/1750-1326-8-13
VENTRELLI L, MARSILIO STRAMBINI L, BARILLARO G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction[J]. Advanced Healthcare Materials, 2015, 4(17): 2606-2640. doi: 10.1002/adhm.201500450
LARRAÑETA E, LUTTON R E M, WOOLFSON A D, et al. Microneedle Arrays as Transdermal and Intradermal Drug Delivery Systems: Materials Science, Manufacture and Commercial Development[J]. Materials Science and Engineering: Reports, 2016, 104: 1-32. doi: 10.1016/j.mser.2016.03.001
JIN Q C, CHEN H J, LI X L, et al. Reduced Graphene Oxide Nanohybrid-Assembled Microneedles as Mini-Invasive Electrodes for Real-Time Transdermal Biosensing[J]. Small, 2019, 15(6): e1804298. doi: 10.1002/smll.201804298
CHENG Y X, GONG X, YANG J, et al. A Touch-Actuated Glucose Sensor Fully Integrated with Microneedle Array and Reverse Iontophoresis for Diabetes Monitoring[J]. Biosensors and Bioelectronics, 2022, 203: 114026. doi: 10.1016/j.bios.2022.114026
SINGH P, CARRIER A, CHEN Y L, et al. Polymeric Microneedles for Controlled Transdermal Drug Delivery[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2019, 315: 97-113. doi: 10.1016/j.jconrel.2019.10.022
SENEL M, DERVISEVIC M, VOELCKER N H. Gold Microneedles Fabricated by Casting of Gold Ink Used for Urea Sensing[J]. Materials Letters, 2019, 243: 50-53. doi: 10.1016/j.matlet.2019.02.014
MUGO S M, ROBERTSON S V, WOOD M. A Hybrid Stainless-Steel SPME Microneedle Electrode Sensor for Dual Electrochemical and GC-MS Analysis[J]. Sensors, 2023, 23(4): 2317. doi: 10.3390/s23042317
DOWNS A M, BOLOTSKY A, WEAVER B M, et al. Microneedle Electrochemical Aptamer-Based Sensing: Real-Time Small Molecule Measurements Using Sensor-Embedded, Commercially-Available Stainless Steel Microneedles[J]. Biosensors and Bioelectronics, 2023, 236: 115408. doi: 10.1016/j.bios.2023.115408
DERVISEVIC M, ALBA M, YAN L, et al. Transdermal Electrochemical Monitoring of Glucose via High-Density Silicon Microneedle Array Patch[J]. Advanced Functional Materials, 2022, 32(3): 2009850. doi: 10.1002/adfm.202009850
SONG S, NA J, JANG M, et al. A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(6): 1288-1299. doi: 10.1109/TBCAS.2019.2954846
ZHANG B, YANG Y, ZHAO Z, et al. A Gold Nanoparticles Deposited Polymer Microneedle Enzymatic Biosensor for Glucose Sensing[J]. Electrochimica Acta, 2020, 358: 136917. doi: 10.1016/j.electacta.2020.136917
JOSHI P, RILEY P R, MISHRA R, et al. Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid[J]. Biosensors, 2022, 12(4): 198. doi: 10.3390/bios12040198
DERVISEVIC M, VOELCKER N H. Microneedles with Recessed Microcavities for Electrochemical Sensing in Dermal Interstitial Fluid[J]. ACS Materials Letters, 2023, 5(7): 1851-1858. doi: 10.1021/acsmaterialslett.3c00441
ZHU D D, TAN Y R, ZHENG L W, et al. Microneedle-Coupled Epidermal Sensors for In-Situ-Multiplexed Ion Detection in Interstitial Fluids[J]. ACS Applied Materials and Interfaces, 2023, 15(11): 14146-14154.
ODINOTSKI S, DHINGRA K, GHAVAMINEJAD A, et al. A Conductive Hydrogel-Based Microneedle Platform for Real-Time pH Measurement in Live Animals[J]. Small, 2022, 18(45): e2200201. doi: 10.1002/smll.202200201
LI J, Wei M, Gao B B. A Review of Recent Advances in Microneedle-Based Sensing within the DermalI SF That Could Transform Medical Testing[J]. ACS Sensors, 2024, 9: 1149-1161. doi: 10.1021/acssensors.4c00142
MA S W LI J Q, PEI L X, et al. Microneedle-Based Interstitial Fluid Extraction for Drug Analysis: Advances, Challenges and Prospects[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 111-126. doi: 10.1016/j.jpha.2022.12.004
HUANG X S, ZHENG S T, LIANG B M, et al. 3D-Assembled Microneedle Ion Sensor-Based Wearable System for the Transdermal Monitoring of Physiological Ion Fluctuations[J]. Microsystems and Nanoengineering, 2023, 9: 25. doi: 10.1038/s41378-023-00497-0
MING T, LAN T T, YU M X, et al. Platinum Black/Gold Nanoparticles/Polyaniline Modified Electrochemical Microneedle Sensors for Continuous in Vivo Monitoring of pH Value[J]. Polymers, 2023, 15(13): 2796. doi: 10.3390/polym15132796
DERVISEVIC M, ALBA M, ADAMS T E, et al. Electrochemical Immunosensor for Breast Cancer Biomarker Detection Using High-Density Silicon Microneedle Array[J]. Biosensors and Bioelectronics, 2021, 192: 113496. doi: 10.1016/j.bios.2021.113496
PANICKER L R, SHAMSHEERA F, NARAYAN R, et al. Wearable Electrochemical Microneedle Sensors Based on the Graphene-Silver-Chitosan Nanocomposite for Real-Time Continuous Monitoring of the Depression Biomarker Serotonin[J]. ACS Applied Nano Materials, 2023, 6(22): 20601-20611. doi: 10.1021/acsanm.3c02976
JI H W, WANG M Y, WANG Y T, et al. Skin-Integrated, Biocompatible and Stretchable Silicon Microneedle Electrode for Long-Term EMG Monitoring in Motion Scenario[J]. NPJ Flexible Electronics, 2023, 7: 46. doi: 10.1038/s41528-023-00279-8
YIN S J, YU Z Q, SONG N N, et al. A Long Lifetime and Highly Sensitive Wearable Microneedle Sensor for the Continuous Real-Time Monitoring of Glucose in Interstitial Fluid[J]. Biosensors and Bioelectronics, 2024, 244: 115822. doi: 10.1016/j.bios.2023.115822
TEYMOURIAN H, MOONLA C, TEHRANI F, et al. Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis[J]. Analytical Chemistry, 2020, 92(2): 2291-2300. doi: 10.1021/acs.analchem.9b05109
GOUD K Y, MAHATO K, TEYMOURIAN H, et al. Wearable Electrochemical Microneedle Sensing Platform for Real-Time Continuous Interstitial Fluid Monitoring of Apomorphine: Toward Parkinson Management[J]. Sensors and Actuators: B Chemical, 2022, 354: 131234. doi: 10.1016/j.snb.2021.131234
PARRILLA M, DETAMORNRAT U, DOMÍNGUEZ-ROBLES J, et al. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment[J]. ACS Sensors, 2023, 8(11): 4161-4170. doi: 10.1021/acssensors.3c01381
KAI H, KUMATANI A. A Porous Microneedle Electrochemical Glucose Sensor Fabricated on a Scaffold of a Polymer Monolith[J]. Journal of Physics: Energy, 2021, 3(2): 024006. doi: 10.1088/2515-7655/abe4a1
HEGARTY C, MCKILLOP S, MCGLYNN R J, et al. Microneedle Array Sensors Based on Carbon Nanoparticle Composites: Interfacial Chemistry and Electroanalytical Properties[J]. Journal of Materials Science, 2019, 54(15): 10705-10714. doi: 10.1007/s10853-019-03642-1
HEGARTY C, MCCONVILLE A, MCGLYNN R J, et al. Design of Composite Microneedle Sensor Systems for the Measurement of Transdermal pH[J]. Materials Chemistry and Physics, 2019, 227: 340-346. doi: 10.1016/j.matchemphys.2019.01.052
LI Y F, ZHOU W, LIU C Z, et al. Fabrication and Characteristic of Flexible Dry Bioelectrodes with Microstructures Inspired by Golden Margined Century Plant Leaf[J]. Sensors and Actuators A: Physical, 2021, 321: 112397. doi: 10.1016/j.sna.2020.112397
DERVISEVIC M, JARA FORNEROD M J, HARBERTS J, et al. Wearable Microneedle Patch for Transdermal Electrochemical Monitoring of Urea in Interstitial Fluid[J]. ACS Sensors, 2024, 9(2): 932-941. doi: 10.1021/acssensors.3c02386
KIM Y J, CHINNADAYYALA S R, LE H T N, et al. Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission[J]. Sensors, 2022, 22(7): 2787. doi: 10.3390/s22072787
WU Y, TEHRANI F, TEYMOURIAN H, et al. Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring[J]. Analytical Chemistry, 2022, 94(23): 8335-8345. doi: 10.1021/acs.analchem.2c00829
AJMAL MOKHTAR S M, YAMADA M, PROW T W, et al. PEDOT Coated Microneedles towards Electrochemically Assisted Skin Sampling[J]. Journal of Materials Chemistry B, 2023, 11(22): 5021-5031. doi: 10.1039/D3TB00485F
JIA H L, ZHAO J W, QIN L R, et al. The Fabrication of an Ni6MnO8Nanoflake-Modified Acupuncture Needle Electrode for Highly Sensitive Ascorbic Acid Detection[J]. RSC Advances, 2019, 9(46): 26843-26849. doi: 10.1039/C9RA03850G
CHINNADAYYALA S R, CHO S. Porous Platinum Black-Coated Minimally Invasive Microneedles for Non-Enzymatic Continuous Glucose Monitoring in Interstitial Fluid[J]. Nanomaterials, 2020, 11(1): 37. doi: 10.3390/nano11010037
CHIEN M N, FAN S H, HUANG C H, et al. Continuous Lactate Monitoring System Based on Percutaneous Microneedle Array[J]. Sensors, 2022, 22(4): 1468. doi: 10.3390/s22041468
BOLLELLA P, SHARMA S, CASS A E G, et al. Minimally-Invasive Microneedle-Based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid[J]. Electroanalysis, 2019, 31(2): 374-382. doi: 10.1002/elan.201800630
ZHU J L, WANG F Q, CHEN J Y, et al. An Efficient Biosensor Using a Functionalized Microneedle of Cu2O-Based CoCu-LDH for Glucose Detection[J]. RSC Advances, 2023, 13(46): 32558-32566. doi: 10.1039/D3RA05957J
OLIVEIRA D, CORREIA B P, SHARMA S, et al. Molecular Imprinted Polymers on Microneedle Arrays for Point of Care Transdermal Sampling and Sensing of Inflammatory Biomarkers[J]. ACS Omega, 2022, 7(43): 39039-39044. doi: 10.1021/acsomega.2c04789
CHINNADAYYALA SOMASEKHAR R, JINSOOP, SATTI AFRAIZ T, et al. Minimally Invasive and Continuous Glucose Monitoring Sensor Based on Non-Enzymatic Porous Platinum Black-Coated Gold Microneedles[J]. Electrochimica Acta, 2020, 369: 137691.
SONG N X, XIE P F, SHEN W, et al. A Microwell-Based Impedance Sensor on an Insertable Microneedle for Real-Time in Vivo Cytokine Detection[J]. Microsystems and Nanoengineering, 2021, 7: 96. doi: 10.1038/s41378-021-00297-4
LINH V T N, YIM S G, MUN C, et al. Bioinspired Plasmonic Nanoflower-Decorated Microneedle for Label-Free Intradermal Sensing[J]. Applied Surface Science, 2021, 551: 149411. doi: 10.1016/j.apsusc.2021.149411
TORTOLINI C, CASS A E G, POFI R, et al. Microneedle-Based Nanoporous Gold Electrochemical Sensor for Real-Time Catecholamine Detection[J]. Mikrochimica Acta, 2022, 189(5): 180. doi: 10.1007/s00604-022-05260-2
PIAO H L, CHOI Y H, KIM J, et al. Impedance-Based Polymer Microneedle Patch Sensor for Continuous Interstitial Fluid Glucose Monitoring[J]. Biosensors and Bioelectronics, 2024, 247: 115932. doi: 10.1016/j.bios.2023.115932
ZHANG Y Y, ZHAO G Y, ZHENG M J, et al. A Nanometallic Conductive Composite-Hydrogel Core-Shell Microneedle Skin Patch for Real-Time Monitoring of Interstitial Glucose Levels[J]. Nanoscale, 2023, 15(40): 16493-16500. doi: 10.1039/D3NR01245J
SACHINK, SUNDAR S S, PRATIMAK, et al. Machine Learning Enabled Onsite Electrochemical Detection of Lidocaine Using a Microneedle Array Integrated Screen Printed Electrode[J]. Electrochimica Acta, 2024, 475: 143664. doi: 10.1016/j.electacta.2023.143664
ZHAO L, WEN Z Z, JIANG F J, et al. Silk/Polyols/GOD Microneedle Based Electrochemical Biosensor for Continuous Glucose Monitoring[J]. RSC Advances, 2020, 10(11): 6163-6171. doi: 10.1039/C9RA10374K
MISHRA R K, GOUD K Y, LI Z H, et al. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array[J]. Journal of the American Chemical Society, 2020, 142(13): 5991-5995. doi: 10.1021/jacs.0c01883
LI Z H, KADIAN S, MISHRA R K, et al. Electrochemical Detection of Cholesterol in Human Biofluid Using Microneedle Sensor[J]. Journal of Materials Chemistry B, 2023, 11(26): 6075-6081. doi: 10.1039/D2TB02142K
ANA-MARIA D, MARCP, SOFIEC, et al. Microneedle Array-Based Electrochemical Sensor Functionalized with SWCNTS for the Highly Sensitive Monitoring of MDMA in Interstitial Fluid[J]. Microchemical Journal, 2023, 193: 109257. doi: 10.1016/j.microc.2023.109257
LIU Y Q, YU Q, YE L, et al. A Wearable, Minimally-Invasive, Fully Electrochemically-Controlled Feedback Minisystem for Diabetes Management[J]. Lab on a Chip, 2023, 23(3): 421-436. doi: 10.1039/D2LC00797E
ABBASIASL T, MIRLOU F, MIRZAJANI H, et al. A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid[J]. Advanced Materials, 2024, 36(2): e2304704. doi: 10.1002/adma.202304704
ZHENG L W, ZHU D D, XIAO Y, et al. Microneedle Coupled Epidermal Sensor for Multiplexed Electrochemical Detection of Kidney Disease Biomarkers[J]. Biosensors and Bioelectronics, 2023, 237: 115506. doi: 10.1016/j.bios.2023.115506
ZHENG M J, ZHANG Y Y, HU T L, et al. A Skin Patch Integrating Swellable Microneedles and Electrochemical Test Strips for Glucose and Alcohol Measurement in Skin Interstitial Fluid[J]. Bioengineering and Translational Medicine, 2022, 8(5): e10413.