SENGUPTA D, ROMANO J, KOTTAPALLI A G P. Electrospun Bundled Carbon Nanofibers for Skin-Inspired Tactile Sensing, Proprioception and Gesture Tracking Applications[J]. NPJ Flexible Electronics, 2021, 5: 29. doi: 10.1038/s41528-021-00126-8
GUO X G, WANG X J, OU D P, et al. Controlled Mechanical Assembly of Complex 3D Mesostructures and Strain Sensors by Tensile Buckling[J]. NPJ Flexible Electronics, 2018, 2: 14. doi: 10.1038/s41528-018-0028-y
LU Y, BISWAS M C, GUO Z H, et al. Recent Developments in Bio-Monitoring via Advanced Polymer Nanocomposite-Based Wearable Strain Sensors[J]. Biosensors & Bioelectronics, 2019, 123: 167-177.
ZHAO J Y, JIANG L, CHE G, et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber[J]. The Plant Cell, 2019, 31(6): 1289-1307. doi: 10.1105/tpc.18.00905
SAFAEE M M, GRAVELY M, ROXBURY D. A Wearable Optical Microfibrous Biomaterial with Encapsulated Nanosensors Enables Wireless Monitoring of Oxidative Stress[J]. Advanced Functional Materials, 2021, 31(13): 2006254. doi: 10.1002/adfm.202006254
KAH M, TUFENKJI N, WHITE J C. Nano-Enabled Strategies to Enhance Crop Nutrition and Protection[J]. Nature Nanotechnology, 2019, 14(6): 532-540. doi: 10.1038/s41565-019-0439-5
HUNTER M C, SMITH R G, SCHIPANSKI M E, et al. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification[J]. BioScience, 2017, 67(4): 386-391. doi: 10.1093/biosci/bix010
WAN Y B, QIU Z G, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586. doi: 10.1002/aelm.201700586
MAI D D, MO J H, SHAN S J, et al. Self-Healing, Self-Adhesive Strain Sensors Made with Carbon Nanotubes/Polysiloxanes Based on Unsaturated Carboxyl-Amine Ionic Interactions[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49266-49278.
HAN T, NAG A, AFSARIMANESH N, et al. Gold/Polyimide-Based Resistive Strain Sensors[J]. Electronics, 2019, 8(5): 565. doi: 10.3390/electronics8050565
GUO X H, ZHAO Y N, XU X, et al. Biomimetic Flexible Strain Sensor with High Linearity Using Double Conducting Layers[J]. Composites Science and Technology, 2021, 213: 108908. doi: 10.1016/j.compscitech.2021.108908
LIU Q, CHEN J, LI Y R, et al. High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions[J]. ACS Nano, 2016, 10(8): 7901-7906. doi: 10.1021/acsnano.6b03813
HUANG Y, CHEN Y, FAN X Y, et al. Wood Derived Composites for High Sensitivity and Wide Linear-Range Pressure Sensing[J]. Small, 2018, 14(31). DOI: 10.1002/smll.201801520.
WANG C F, ZHAO J, MA C, et al. Detection of Non-Joint Areas Tiny Strain and Anti-Interference Voice Recognition by Micro-Cracked Metal Thin Film[J]. Nano Energy, 2017, 34: 578-585. doi: 10.1016/j.nanoen.2017.02.050
WANG G D, WANG M, ZHENG M Y, et al. High-Sensitivity GNPS/PDMS Flexible Strain Sensor with a Microdome Array[J]. ACS Applied Electronic Materials, 2022, 4(9): 4576-4587. doi: 10.1021/acsaelm.2c00782
WANG X F, VLADISLAV Z, VIKTOR O, et al. Online Recognition and Yield Estimation of Tomato in Plant Factory Based on YOLOv3[J]. Scientific Reports, 2022, 12: 8686. doi: 10.1038/s41598-022-12732-1
KANG D, PIKHITSA P V, CHOI Y W, et al. Ultrasensitive Mechanical Crack-Based Sensor Inspired bythe Spider Sensory System[J]. Nature, 2014, 516(7530): 222-226. doi: 10.1038/nature14002
ZHANG C, ZHANG C, WU X Y, et al. An Integrated and Robust Plant Pulse Monitoring System Based on Biomimetic Wearable Sensor[J]. NPJ Flexible Electronics, 2022, 6: 43. doi: 10.1038/s41528-022-00177-5
WANG J X, LIU L P, YANG C, et al. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16885-16893.
LIU L P, NIU S C, ZHANG J Q, et al. Bioinspired, Omnidirectional, and Hypersensitive Flexible Strain Sensors[J]. Advanced Materials, 2022, 34(17): e2200823. doi: 10.1002/adma.202200823
LIU L P, JIAO Z B, ZHANG J Q, et al. Bioinspired, Superhydrophobic, and Paper-Based Strain Sensors for Wearable and Underwater Applications[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1967-1978.
XU H H, LV Y, QIU D X, et al. An Ultra-Stretchable, Highly Sensitive and Biocompatible Capacitive Strain Sensor from an Ionic Nanocomposite for On-Skin Monitoring[J]. Nanoscale, 2019, 11(4): 1570-1578. doi: 10.1039/C8NR08589G
TANG Z H, JIA S H, WANG F, et al. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6624-6635.
YANG Y P, LUO C Z, JIA J J, et al. A Wrinkled Ag/CNTS-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring[J]. Nanomaterials, 2019, 9(6): 850. doi: 10.3390/nano9060850
JUNG H, PARK C, LEE H, et al. Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crack Arrangement[J]. Sensors, 2019, 19(12): 2834. doi: 10.3390/s19122834
BUENO A, ALFARHAN A, ARAND K, et al. Effects of Temperature on the Cuticular Transpiration Barrier of Two Desert Plants with Water-Spender and Water-Saver Strategies[J]. Journal of Experimental Botany, 2019, 70(5): 1613-1625. doi: 10.1093/jxb/erz018
BAE J, YUN T G, SUH B L, et al. Self-Operating Transpiration-Driven Electrokinetic Power Generator with an Artificial Hydrological Cycle[J]. Energy & Environmental Science, 2020, 13(2): 527-534.
DENG L J, DENG Q H. The Basic Roles of Indoor Plants in Human Health and Comfort[J]. Environmental Science and Pollution Research, 2018, 25(36): 36087-36101. doi: 10.1007/s11356-018-3554-1