LI W W, QI H, WANG B G, et al. Ultrathin NiCo2O4 Nanowalls Supported on a 3D Nanoporous Gold Coated Needle for Non-Enzymatic Amperometric Sensing of Glucose[J]. Mikrochimica Acta, 2018, 185(2): 124. doi: 10.1007/s00604-017-2663-8
AHMAD R, TRIPATHY N, AHN M S, et al. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode[J]. Scientific Reports, 2017, 7(1): 5715. doi: 10.1038/s41598-017-06064-8
唐晓兰, 赵建伟, 秦丽溶, 等. MnCo2O4/Ni分级微纳阵列用于高效无酶葡萄糖传感器的研究[J]. 西南大学学报(自然科学版), 2023, 45(3): 222-231. doi: 10.13718/j.cnki.xdzk.2023.03.019
黄小梅, 邓祥, 邢浪漫, 等. Cu(Ⅱ)Co(Ⅱ)双金属碳纳米片用于无酶葡萄糖传感器[J]. 应用化学, 2022, 39(12): 1891-1902.
韩枫, 夏承锴, 王斯琰, 等. 高性能多级花状Co3O4基无酶葡萄糖电化学传感器[J]. 化学通报, 2018, 81(9): 834-839.
LIU Y J, ZHAO W Q, LI X L, et al. Hierarchical α-Fe2O3 Microcubes Supported on Ni Foam as Non-Enzymatic Glucose Sensor[J]. Applied Surface Science, 2020, 512: 145710. doi: 10.1016/j.apsusc.2020.145710
AMJAD F, PAN L J, MUHAMMAD U, et al. In-situ Growth of Porous CoTe2 Nanosheets Array on 3D Nickel Foam for Highly Sensitive Binder-Free Non-Enzymatic Glucose Sensor[J]. Journal of Alloys and Compounds, 2021, 861: 158642. doi: 10.1016/j.jallcom.2021.158642
XU Z H, WANG Q Z, HUI Z S, et al. Carbon Cloth-Supported Nanorod-Like Conductive Ni/Co Bimetal MOF: A Stable and High-Performance Enzyme-Free Electrochemical Sensor for Determination of Glucose in Serum and Beverage[J]. Food Chemistry, 2021, 349: 129202. doi: 10.1016/j.foodchem.2021.129202
YUAN K, ZHANG Y C, HUANG S H, et al. Copper Nanoflowers on Carbon Cloth as a Flexible Electrode toward both Enzymeless Electrocatalytic Glucose and H2O2 [J]. Electroanalysis, 2021, 33(7): 1800-1809. doi: 10.1002/elan.202100029
HAGHIGHI B, TABRIZI M A. Direct Electron Transfer from Glucose Oxidase Immobilized on a Nano-Porous Glassy Carbon Electrode[J]. Electrochimica Acta, 2011, 56(27): 10101-10106. doi: 10.1016/j.electacta.2011.08.106
TANG W W, LI L, WU L J, et al. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes[J]. PLoS One, 2014, 9(5): e95030. doi: 10.1371/journal.pone.0095030
CHANDRA S, SIRAJ S, WONG D K Y. Recent Advances in Biosensing for Neurotransmitters and Disease Biomarkers Using Microelectrodes[J]. ChemElectroChem, 2017, 4(4): 822-833. doi: 10.1002/celc.201600810
CUI J Y, LI Z H, LIU K, et al. A Bifunctional Nonenzymatic Flexible Glucose Microsensor Based on CoFe-Layered Double Hydroxide[J]. Nanoscale Advances, 2019, 1(3): 948-952. doi: 10.1039/C8NA00231B
ZOU X L, HE Y Y, SUN P, et al. A Novel Dealloying Strategy for Fabricating Nanoporous Silver as an Electrocatalyst for Hydrogen Peroxide Detection[J]. Applied Surface Science, 2018, 447: 542-547. doi: 10.1016/j.apsusc.2018.04.018
张永超, 赵录怀, 庞鹏飞. 镍铬合金导线在差动变压器式位移传感器中的应用研究[J]. 传感器与微系统, 2021, 40(3): 55-57.
PIÑON-ESPITIA M, LARDIZABAL-GUTIÉRREZ D, CAMACHO-RÍOS M L, et al. Electronic Structure Comparison of Cu 2p and O 1s X-Ray Photoelectron Spectra for CuxO Nanofibers (x=1, 2, i)[J]. Materials Chemistry and Physics, 2021, 272: 124981. doi: 10.1016/j.matchemphys.2021.124981
BOYCE A L, GRAVILLE S R, SERMON P A, et al. Reduction of CuO-Containing Catalysts, CuO: Ⅱ, XRD and XPS[J]. Reaction Kinetics and Catalysis Letters, 1991, 44(1): 13-18. doi: 10.1007/BF02068377
ZHAO Y Q, ZHAO H L, LIANG Y H, et al. Preparation and Characterization of CuO-CoO-MnO/SiO2 Nanocomposite Aerogels as Catalyst Carriers[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1463-1469. doi: 10.1016/S1003-6326(09)60322-8
JEONG H, RYU H, BAE J S. Improvement of CuO Photostability with the Help of a BiVO4 Capping Layer by Preventing Self-Reduction of CuO to Cu2O[J]. Journal of Industrial and Engineering Chemistry, 2021, 104: 416-426. doi: 10.1016/j.jiec.2021.08.037
LIU Q Q, YANG G, ZHANG J Y, et al. Tunable Perpendicular Anisotropic Magnetoresistance in CoO/Co/Pt Heterostructures[J]. Rare Metals, 2023, 42(2): 579-584. doi: 10.1007/s12598-017-0932-7
CHEN D Z, WANG S, LIU M X, et al. Bionics-Inspired Strong Coupling of Streptococcus-Like NiCo2O4 to Needle-Like MnO2 for Enhanced Electrocatalytic Determination of Glucose[J]. Journal of the Electrochemical Society, 2019, 166(15): B1653-B1659. doi: 10.1149/2.1291915jes
HAGELIN-WEAVER H A E, HOFLUND G B, MINAHAN D M, et al. Electron Energy Loss Spectroscopic Investigation of Co Metal, CoO, and Co3O4 before and after Ar+ Bombardment[J]. Applied Surface Science, 2004, 235(4): 420-448. doi: 10.1016/j.apsusc.2004.02.062
HSU Y W, HSU T K, SUN C L, et al. Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications[J]. Electrochimica Acta, 2012, 82: 152-157. doi: 10.1016/j.electacta.2012.03.094
ZHANG E H, XIE Y, CI S Q, et al. Porous Co3O4 Hollow Nanododecahedra for Nonenzymatic Glucose Biosensor and Biofuel Cell[J]. Biosensors and Bioelectronics, 2016, 81: 46-53. doi: 10.1016/j.bios.2016.02.027
CI S Q, MAO S, HUANG T Z, et al. Enzymeless Glucose Detection Based on CoO/Graphene Microsphere Hybrids[J]. Electroanalysis, 2014, 26(6): 1326-1334. doi: 10.1002/elan.201300645
ZHAO J, ZHENG C D, GAO J, et al. Co3O4 Nanoparticles Embedded in Laser-Induced Graphene for a Flexible and Highly Sensitive Enzyme-Free Glucose Biosensor[J]. Sensors and Actuators B: Chemical, 2021, 347: 130653. doi: 10.1016/j.snb.2021.130653
SIM H, KIM J H, LEE S K, et al. High-Sensitivity Non-Enzymatic Glucose Biosensor Based on Cu(OH)2 Nanoflower Electrode Covered with Boron-Doped Nanocrystalline Diamond Layer[J]. Thin Solid Films, 2012, 520(24): 7219-7223. doi: 10.1016/j.tsf.2012.08.011
SUN M J, LIU J J, WANG S J, et al. Solvothermal Synthesis of Hollow Spherical CuCo2O4 as High-Performance Non-Enzymatic Glucose Sensors[J]. Ionics, 2021, 27: 2257-2266. doi: 10.1007/s11581-021-03955-9